

SH-2015

ACADEMIC BOOK

SEMESRTER VII

BE-ELECTRONICS SH-2015

ACADEMIC BOOK

<u>INDEX</u>

SR. NO.	CONTENT	PAGE NO.
1	Rules & Regulation	03
2	Academic calender	04
3	Digital Image Processing	07
4	IC Technology	40
5	Embedded Systems Design	54
6	Computer Communication & Network	74
7	Power Electronics-II	90

Rules and Regulations

College Timings:

The college timing is from 8:45 AM to 4:45 PM .The students must follow the college timing.

Academic calendar and Time table:

The details of academic curriculum and activities are mentioned in the academic book. The students are required to strictly follow the class Time table and academic calendar.

Attendance:

All students are hereby informed that attendance for lectures/practical/tutorials is compulsory. Mumbai University does not allow students to appear for examination if their attendance is less than 75%. But for the good academic performance of the students, the department expects 100 % attendance in theory and practical separately.

Defaulters:

Defaulters list will be displayed monthly. The defaulter students are required to bring their parents/guardians within four days after the display of defaulters list. If students remain defaulter consistently he/she has to face the consequences as laid by the Mumbai University.

Identity card:

Student must wear ID during college hours in the campus.

Mobile Phone:

Use of cell phone is strictly prohibited in the college premises.

Examination:

As per the university norms, there will be two term test i.e Mid Term test and End Term test in the semester which is an integral part of Internal Assessment for every subject. Both the examination will be based on 40 % and 70 % of theory syllabus respectively for each subject and will be conducted as per the dates mentioned in the academic calendar. Attendance for both internal examination IS COMPULSORY .As per the university norms, no retest will be conducted under any circumstances. Separate passing heads is compulsory for internal and external examination for individual subjects. If the student fails in any of the exam he/she has to reappear in the concerned subject after the declaration of the result.

Practicals/tutorials/Assignments:

The Student should compulsory bring their rough and fair journal for the concerned subject for every practical and tutorials and get it checked regularly. Failing to do so, they will not be allowed for the practical. The Assignments for every subject should be submitted on regular basis. The student must abide by the above mentioned rules and regulations laid down by the department for their better and brighter future.

DEPARTMENT OF

College Of Engineering _____ ELECTRONICS ENGINEERING

ACADEMIC CALENDER SH-2015

COMMENCEMENT OF SEMESTER

Sr. No.	Date	Activity	Responsibility
1	June 06, 2015	Mini Project Orientation Seminar for TE	TE Project Coordinators
	June 30, 2015	Display of Timetable	Time Table Committee
2	July14, 2015	Commencement of Term Address of HODs/ faculty to the student with faculty introduction. Theory and lab period as per time table. (Small orientation lecture are to be organized on first day and course content with industry relevance to be illustrated for all classes. Rules regulations to be explained too.)	HODs / CAs and faculties Distribution of Academic Book to all students Semester wise I.III,V,VII
3	July 18, 2015	Ramzan-Id	
4	July 24, 2015	Final Mini Project Group Formation(TE)	TE Project Coordinator
5	July 24, 2015	Project approval seminar and Display of approved project : Title and Name of Guide	BE Project coordinator
6	As per department's academic Calendar	Lecture Series	As per departmental Academic Time Table
7	July 31, 2015	Project Approval Seminar (TE)	Project coordinator
9	August 06, 2015	Display of approved Mini project(TE)	TE Project Coordinator
10	August 11-14, 2015	Introduction & Initial Mini Project development (TE)	TE Project Coordinator
11	August 14, 2015	Display of defaulter's list – I	Class Advisors/HODs (Reports to be generated through MIS)
12	August 14,2015	Fresher's Party	Student's Council & SE Students
13	August 15,2015	Independence Day	Celebrated in the college as per circular
14	August 17-21, 2015	Literature Survey	TE Project Coordinator
15	August 18,2015	Parsi New Year	
16	August 17 ^m ,18 ^m & 19 ^m ,2015	Students Feedback 1	Sys Admin (Online feedback in coordination with the departments)
17	August 24-26,2015	Mid Term Test	HODs, CAs

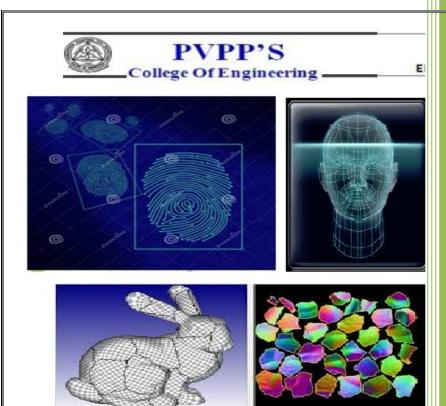
DEPARTMENT OF

College Of Engineering _____ ELECTRONICS ENGINEERING

18		BE Project Review – I	BE Project coordinator
19	August Last week 2015	Mini Project Review	TE Project Coordinator
20	September 1-4, 2015	Practical work of Mini Project activities	TE Project Coordinator
21	September 6,2015	Gopakala	
22	September7 to 11th ,2015	Parent Teachers Interaction Meeting	HODs/ CAs
23	September 8-18, 2015	Implementation of Mini Project	TE Project Coordinator
24	September 14 , 2014	Display of defaulter's list – 2	Class Advisors/ HODs (Reports to be generated through MIS)
25	September 14 to 18th,2015	On line Examination	Coordinators/SysAdministrator/Subject Teacher
26	September 15, 2015	Felicitation to toppers (Engineers Day)	Principal and Student's Council
27	September 17, 2015	Shri Ganesh Sthacana	Principal and Student's Council
28	September 18, 2015	Project Review – II and Submission of softcopy of synopsis	BE Project coordinator
29	September 21,2015	ShriGanesh Visarian	Principal and Student's Council
30	September 22-25, 2015	Results & Conclusion	TE Project Coordinator
31	September 25 ,2015	Bakari ID (ID UL ZUHA)	
32	September 27,2015	Anant Shatwdashi	
33	September 28-30 , 2015	Students Feedback 2	Sys Admin (Online feedback in coordination with departments)
34	September Last week	Mini Project review-II	TE Project Coordinator
35	October 2,2015	Mahatma Gandhi Jayanti	
36	October 5-7,2015	End Term Test	HODs, CAs
37	October 09, 2015	Final certification and submission of synopisis	BE Project coordinator
38	October 06, 2015	Project Diary & Final report submitted to guide for approval	TE Project Coordinator
39	October 10, 2015	Final submission duly approved by guide	TE Project Coordinator
40	October 12,2015	Third Defaulter List	Class Advisors/ HODs (Reports to be generated through MIS
41	October 12-23,2015	Remedial Classes	Coordinators with HODs (For weaker students)

- (PVP	P'S DEPA	RTMENT OF			
	College Of En	ngineering ELECTRONI	ng ELECTRONICS ENGINEERING			
2	October 22,2015	Dasara				
3	October 19-23 ,2015	Final Certification and submission	HOD (As per University schedule)			
4	October 24,2015	Moharam				
5	October 26,2015	Final defaulter list	HODs			
6	October 26,2015	Term End	HODs (As per University Schedule)			
7	October 26 to November 7,2015	Conduction of Oral and Practical Examinations	Faculties (As per University Schedule)			
8	November 11,2015	Laxmi Puian				
9	November 12, 2015	Balipratiprada				
0	After Term End	Vacation for faculties 1st Slot	Exam In - Charge (As per University Schedule)			
1	November 25, 2015	Gurunanak Jayanti				
2	18th Nov.2015 to 19th Dec. 2015	Non Vacation Slot	(As per University schedule)			
3	18th November,2015 onwards	University Theory Examination for all Semesters	Exam In-Charge (As per University schedule)			
4	20th December-3rd Jan. 2016	Vacation for faculties 2 nd Slot	Exam In – Charge (As per University Schedule)			
5	24 th December,2015	ID-E-MILAD				
6	25 th December,2015	CHRISTMAS				
7	January 04,2016	Commencement of FH-2016				
Sun	1) Total Working Weeks 2) Total Working days (<u>excluding</u> Saturdays, Sundays & exa 3) Total Working Days for teaching 4) Available Periods for teaching 5) Tests	: 15 imination) : 86 : 73 : Herweek (2) 3 42 4 56 5 70				

Note:


- a. Attendance is compulsory from first day onwards
- b. Those students who will remain absent on first day of academic semester, are compulsorily required to bring letter along with parents and meet the Principal/HOD for permission to attend the college.

02 Written test

01

c. In case of absence (even for a day or hour), students are required to submit letters from parents at the time of attending the college.

Dr. Raiendra R. Sawant Principal

SH-2015

DIGITAL IMAGE PROCESSING

Mrs.PRITI TYAGI PVPP COLLEGE OF ENGINEERING (ELECTRONICS ENGINEERING)

DEPARTMENT OF

ELECTRONICS ENGINEERING

Subject Plan

GROUP NAME: SIGNALS AND SYSTEM

COURSE TITLE : Digital Image Processing

COURSE CODE : EXC 7051

SEM : VII(SH 2015)

PRE-REQUISITE : EXS 401: Applied Mathematics IV EXC 504: Signals and System

COURSE OBJECTIVES :

- 1. To develop an overview of the field of image processing
- 2. To learn the fundamental concepts of Digital Image Processing.
- 3. To improve pictorial information for human interpretation and process scene data for storage, transmission and representation for autonomous machine perception.
- 4. To understand basic image enhancement and segmentation techniques.
- 5. To illustrate Image Transform calculations mathematically and develop fast transform algorithm
- 6. To learn Image Compression and Decompression Techniques

COURSE OUTCOME :

After successful completion of the course student will be able to

- 1. Understand the concept of Digital Image processing.
- 2. Explain image enhancement and Segmentation technique.
- 3. Understand Digital Image compression and decompression techniques
- 4. Perform Binary Image Processing Operations

ELECTRONICS ENGINEERING

LEARNING RESOURCES: -

RECOMMENDED BOOKS:-

- 1. Gonzalez & Woods, Digital Image Processing, Pearson Education, Second edition.
- 2. S. Jayaraman Digital Image Processing TMH (McGraw Hill) publication
- 3. A.K. Jain, Fundamentals of Image processing, Prentice Hall of India Publication, Third Edition

Reference Books:

- 1. Mc Andrew , Introduction to Digital Image processing with Matlab, Cengage learning publication
- 2. Gonzalez & Woods, Digital Image Processing using MATLAB, Pearson Education
- 3. W. Pratt, Digital Image Processing, Wiley Publication, third edition, 2002.

COURSE MATERIALS MADE AVAILABLE

- 1. Course instructional objectives & outcomes
- 2. Syllabus
- 3. Chapterwise Question Bank

Evaluation:

Theory Exam	80 M
Internal assessment: The average marks of Mid-term test (20 M) & End-	20 M
term test (20 M) will be considered as final IA marks	
Oral	25 M
Term Work	25 M
Total	150 M

ELECTRONICS ENGINEERING

List of Experiments

Topic-1 : Image Enhancement in Spatial Domain[Any two Experiments]

- 1. To enhance image using Histogram Equalization
- 2. To enhance image using Point Processing Operations
- 3. To enhance image using spatial filtering
- 4. To perform Colour Image Enhancement
- 5. Removal of Salt and Pepper noise

Topic-2 : Image Enhancement in Frequency Domain [Any One]

- 1. Find Magnitude Response and Phase Response of two images. Interchange the phase response of the two images and take Inverse Transform.
- 2. High Pass Filtering and Low pass Filtering

Topic-3 : Image Segmentation [Any two Experiments]

- 1. To find edges using LOG
- 2. To find Edges using Prewit/ Sobel / Robert operators.
- 3. To find edges using canny Edge Detection.

Topic-4 : Image Compression [Any Two Experiments]

- 1. To compress using Huffman coding
- 2. To compress DCT coefficient of Image
- 3. To compress Wavelet Coefficient of Image.
- 4. To compress Binary Image using Run Length Coding

Topic-5 : Image Transform [Any two Experiments]

- 1. Convolution Property of DFT
- 2. DWT and IDWT
- 3. Compute and plot DCT Basis

Topic-6 : Morphological Operations [Any One]

- 1. Dilation and Erosion
- 2. Opening and Closing Operation

DEPARTMENT OF

_College Of Engineering _____ ELECTRONICS ENGINEERING

SYLLABUS

Module No.	Unit No.	Topics	Hrs.			
1		Digital Image Processing Fundamentals	06			
	1.1	Introduction: Background, Digital Image Representation, Fundamental Steps in Image Processing, Elements of a Digital Image Processing System				
	1.2	Digital Image Fundamentals: Elements of Visual Perception, A Simple Image Model, Sampling and Quantization, Some Basic Relationships between Pixels, Imagining Geometry. Image File Formats : BMP, TIFF and JPEG. Colour Models (RGB, HSI, YUV)				
2		Image Enhancement	08			
	2.1	Spatial Domain Methods, Frequency Domain Methods, Some Simple Intensity Transformations, Histogram Processing, Image Subtraction, Image Averaging, Background	10.00			
	2.2	Smoothing Filters, Sharpening Filters, Lowpass Filtering, Highpass Filtering, Generation of Spatial Masks from Frequency Domain Specifications. Homomorphic Filtering.				
3	3 Image Segmentation and Representation					
	3.1	Detection of Discontinuities, Edge Linking using Hough Transform, Thresholding, Region based Segmentation, Split and Merge Technique,				
	3.2	Image Representation and Description, Chain Code, Polygonal, Representation, Shape Number, Moments.				
4		Binary Image Processing	06			
	4.1	Binary Morphological Operators, Hit-or-Miss Transformation, Boundary Extraction, Region Filling, Thinning and Thickening, Connected Component Labeling, Iterative Algorithm and Classical Algorithm				
5		Image Transform	12			
	5.1	Introduction to the Fourier Transform, The Discrete Fourier Transform, Some Properties of the Two-Dimensional Fourier Transform Fast Fourier Transform(FFT),				
	5.2	Discrete Hadamard Transform(DHT), Fast Hadamard Transform(FHT), Discrete Cosine Transform(DCT), Discrete Wavelet Transform(DWT),				
6		Image Compression:	12			
		Fundamentals - Coding Redundancy, Interpixel Redundancy, Psychovisual Redundancy, Fidelity Criteria.				
	6.1	Image Compression Models – The Source Encoder and Decoder, Lossless Compression Techniques : Run Length Coding, Arithmetic Coding, Huffman Coding, Differential PCM,				
	6.2	Lossy Compression Techniques: Improved Gray Scale Quantization, Vector Quantization, JPEG, MPEG-1.				
		Total	52			

PVPP'S College Of Engineering DEPARTMENT OF

ELECTRONICS ENGINEERING

Chapterwise Plan

Subject Title: Digital Image Processing

Chapter No. : 1

Chapter Name : Digital Image Fundamentals

Approximate Time Needed : 06 hrs

Lesson Schedule :

em
at at law
entation
m Sampling and Quantization
en pixels

Objectives:

- 1. To define scope of Image Processing.
- 2. To give an idea of the state of the art in image processing by examining some of the principal areas in which it is applied.
- 3. To discuss principal approaches used in digital Image Processing.
- 4. To provide an overview of the image processing system which includes various elements such as Image acquisition, sampling, Quantization, Processing Storage and display
- 5. To generate digital image from sensed data.
- 6. Digital Image fundamentals
- 7. To represent image in matrix form.
- 8. To understand different image file formats.

1	PVPP'S	DEPARTMENT OF
8	College Of Engineering	ELECTRONICS ENGINEERING
	Model Questions:	
1. E	xplain the elements of digital image processing syste	em. (10)
(r	te true or false and justify : a) In general, fine sampling is preferred in smoo egions, where grey level transitions are sharp. b) Quality of the picture depends on the numl represent the picture.	
(a) ((b) (c) (d)	Vrite short notes on the following : Connectivity of pixels. Image Sampling and Quantization Non uniform sampling and Quantization Spatial and Tonal Resolution Image Acquisition Methods	
	Consider the image segment shown below: 3 1 2 1 (q) 2 2 0 2 1 2 1 1 (p) 1 0 1 2 Compute the length of the shortest 4, 8, and m par	th between p & q.
5 . [Define a. Euclidean Distance b. City Block distance c. Chess Board Distance d. 4, 8. M connectivity	

	PVP College Of E	P'S ngineering	ELECTRONICS ENGINEERING	
		Chapterv	wise Plan	
Subject	Title: Digital Im	age Processing		
Chapter	No. : 2 A			
	Name : Image	Enhancement in Sp	oatial Domain	
	mate Time Nee	ded : 04 hrs		
		ded : 04 hrs	er hour	
	Schedule :			
	Schedule : Lecture No.	Portion covered p	g operations	
	Schedule : Lecture No. 07	Portion covered p	g operations essing	

Objectives:

- 1. To yield a better quality image for the purpose of some particular application that can be done by suppressing the noise and improve the image contrast
- 2. To learn Image Enhancement algorithms employed to emphasize, sharpen or smoothen image features in spatial domain for display and analysis.
- 3. To improve the quality of an image as perceived by a human being.
- 4. To discuss a number of techniques for intensity transformations and spatial filtering

Model Questions:

..State true or false and justify (4 marks each)

(a) Enhancement process does not change the information contents of the image.

(b) For digital images having salt-pepper noise, median filter is the best filter.

(c) The discrete histogram equalization technique will not, in general, yield a flat histogram.

(d) A Highpass - filtered image can be obtained in the spatial domain as

Highpass = Original - Lowpass.

(e) The principal operation of median filter is to force points with distinct intensities to be more like their neighbors.

DEPARTMENT OF

College Of Engineering

ELECTRONICS ENGINEERING

(f) Second pass of Histogram equalization will produce same result as the first pass.

(g) The sum of the coefficients of high pass mask should be one.

2. Histogram of a digital image with eight quantization level is given below. Perform histogram equalization. Derive the transformation function and the new histogram.

(10)

Grey level r	0	1	2	3	4	5	6	7
Number of pixels nr	40	60	80	120	140	160	180	220

3. A digital image with eight quantization levels has the following histogram perform histogram equalization and derive transformation function. Give new equalized histogram.

Grey level r	0	1	2	3	4	5	6	7
No. of Pixels with grey level n _r	120	160	200	150	80	80	100	110

4. Explain briefly the following operations to digital images along with one application for each : (10)

(i) Median filter. (ii) Image subtraction. (iii) Contrast stretching. (iv) Bit plane slicing. (v) Thresholding.

5. Perform zooming operation using linear interpolation as well as replication, on following image. State which method performs generally better. (4)

40	60	55	50	
45	62	48	55	
20	24	27	34	
07	06	40	45	

6. Give following masks of size 3×3 and explain their usefulness in image processing (any four) :

Sobel (ii) Roberts (iii) Low-pass filter (iv) Prewitt

(i) Suppose that a digital image is subjected to histogram equilization. Show that second pass of 7. histogram equilization will produce exactly the same result as first pass.

(10)

(8)

(a) Apply the following Image Enhancement techniques on the given Image. 8.

(10)

(i) Digital Negative (ii) Bit Plane Slicing (iii) Thresholding PVPP'S
 College Of Engineering

	I	mag	e	
2	1	3	4	5
7	4	2	0	1
3	5	1	4	6
0	4	0	2	3
2	1	6	1	4

9. Apply Low Pass and High Pass Spatial Mask on the following image matrix

	5	4	7	1	2]
F -	6	2	3	4	1
$\mathbf{F} =$	3	5	6	8	2
	4	3	7	1	8

10. Apply Low Pass and High Pass Spatial Mask on the following image matrix Prove that Highpass=Original – Lowpass. Assume virtual rows and columns

30	31	32
33	120	30
32	32	31

11.

Plot the histogram for the following image. Equalize the histogram and then plot the equalized histogram and the image corresponding to the equalized histogram. The 4×5 image is represented by 3 bits/pixel.

1	3	3	3	2
3	2	3	1	2
5	1	1	1	4
5	6	6	7	0

12

DEPARTMENT OF

ELECTRONICS ENGINEERING

12 Differentiate between point processing and mask processing operations. Classify the following operations into point processing and mask processing operations

- (i) Gray Level slicing
- (ii) Median filtering
- (iii) High pass filtering
- (iv) Edge detection with sobel operator
- (v) Dynamic range compression
- (vi) Thresholding

Draw the transfer characteristics of any two point processing operations.

PVPP'S College Of Engineering DEPARTMENT OF

ELECTRONICS ENGINEERING

Chapterwise Plan

Subject Title: Digital Signal Processing and Processors

Chapter No. : 2B

Chapter Name : Image Enhancement in Frequency Domain

Approximate Time Needed : 06 hrs

Lesson Schedule :

Lecture No.	Portion covered per hour
11	2D -Fourier Transform
12	2D-DFT
13	Properties of 2D DFT
14	FFT
15	LPF, HPF (Ideal, Butterworth, Gaussian)
16	High Boost filtering, Homomorphic filtering

Objectives:

- 1. To yield a better quality image for the purpose of some particular application that can be done by suppressing the noise and improve the image contrast
- 2. To learn Image Enhancement algorithms employed to emphasize, sharpen or smoothen image features in frequency domain for display and analysis.
- 3. To establish a foundation for the fourier Transform and how it is used in basic image filtering
- 4. To implement Fourier transform in the context of Image processing
- 5. Formulation of filtering in the frequency domain.
- 6. Homomorphic filtering

ELECTRONICS ENGINEERING

Model Questions:

- 1. Write short notes on the following :
 - (a) Homomorphic filtering.
 - (b) Discrete Fourier Transform
- 2. Prove that if an image f(m,n), $0 \le m \le M-1$ and $0 \le n \le N-1$ is multiplied by the checkerboard pattern $(-1)^{m+n}$. Then its DFT is centered at (M/2,N/2)
- 3. List any two properties of 2D DFT and prove any one of them.
- 4. Explain with block diagram basic steps for filtering in frequency domain.
- 5. What are the steps required to perform filtering in the frequency domain. Also explain the Butterworth Low Pass Filter.
- 6. Explain separability and Translation property of DFT for an image.
- 7. Show that 2D-DFT of an image can be computed by row & column passes with 1D DFT algorithm.

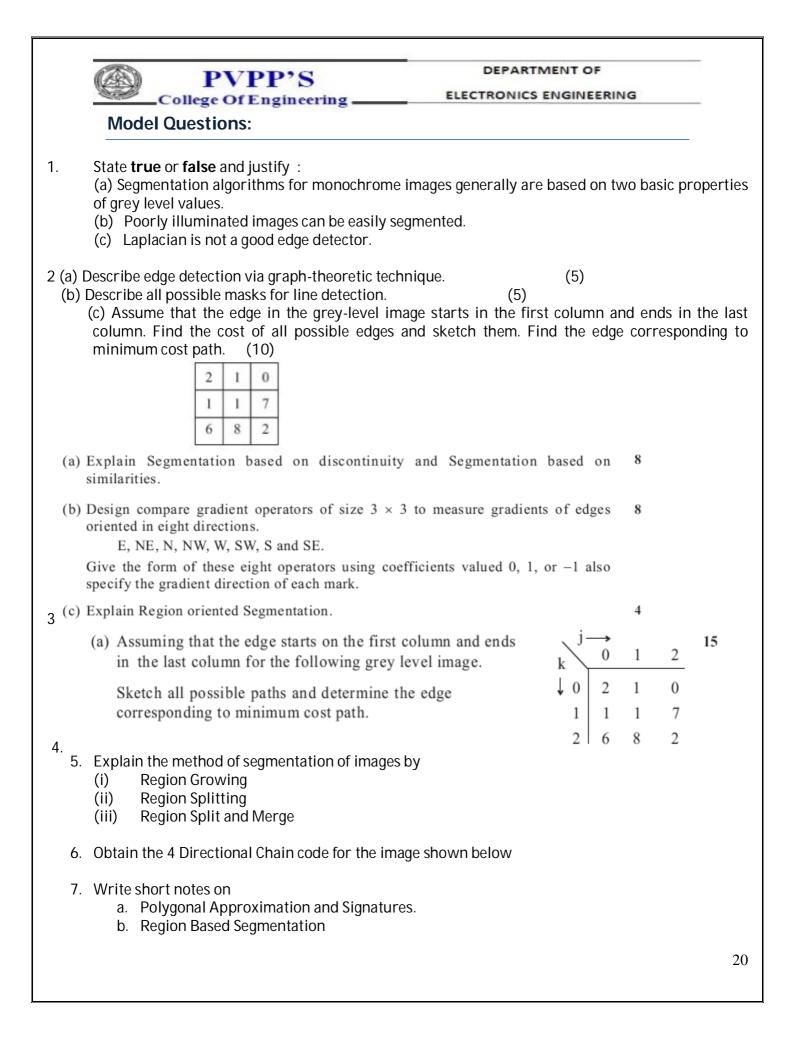
ELECTRONICS ENGINEERING

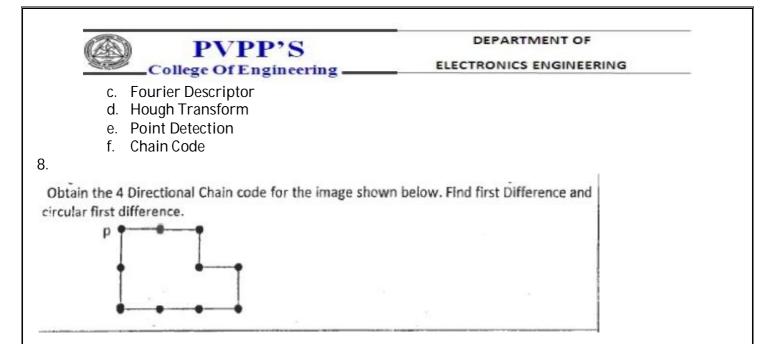
<u>Chapterwise Plan</u>

Subject Title: Digital Image Processing

Chapter No. : 3

Chapter Name : Image Segmentation and Image Representation


Approximate Time Needed : 09 hrs


Lesson Schedule :

Lecture No.	Portion covered per hour		
17	17 Image Segmentation Based on Discontinuity		
18	Edge Detection		
19	Hough Transform		
20	Graph – Theoretic Techniques		
21	Thresholding		
22	Region based Segmentation		
23	Region based Segmentation		
24	Image Representation		
25	Chain Code		

Objectives:

- 1. Image Segmentation is an essential preliminary step in most automatic pictorial pattern recognition and scene analysis applications.
- 2. To subdivide an image into its constituent regions or objects.
- 3. To extract various features of the image which can be merged or split in order to build objects of interest on which analysis and interpretation can be performed
- 4. To analyze the content of the image and extract important features from image data.
- 5. Learn various thresholding techniques.
- 6. Learn different shape representation techniques

DEPARTMENT OF

College Of Engineering _____ ELECTRONICS ENGINEERING

Chapterwise Plan

Subject Title: Digital Image Processing

Chapter No. : 4

Chapter Name : Image Compression

Approximate Time Needed : 12 hrs

Lesson Schedule :

Lecture No.	Portion covered per hour		
26	Introduction		
27	Data Redundancy		
28	Image Compression Model		
29	Lossless Compression (Variable Length Coding)		
30	Lossless Compression (LZW, Bit Plane Coding)		
31	Arithmetic Coding		
32	Arithmetic Coding		
33	Fidelity Criteria		
34	Differential PCM		
35	IGS Coding		
36	Vector quantization		
37	JPEG, MPEG I		

Objectives:

The student will learn

- 1. Compact Image representation
- 2. To reduce the amount of data required to represent an image
- 3. Techniques to compress amount of data needed to represent information.
- 4. To find statistical properties of the image to design an appropriate compression transformation of the image.
- 5. Image compression standards

PVPP'S College Of Engineering

DEPARTMENT OF

ELECTRONICS ENGINEERING

Model Questions:

1. State true or false and justify :

(a) Variable length coding procedures can be used to compress a histogram equalized image with 2ⁿ grey levels.

(b) All image compression techniques are invertible.

- (c) Run length coding always gives data compression.
- (d) Runlength coding is loss-less coding but may not give data compression always.
- (e) In transform based image compression, DCT is widely used as compared to other Transforms.

2. (a) Generate Huffman code for the given source. Calculate entropy of the source, average length of the code and the compression ratio achieved :

Symbol

Symbol	al	a2	a3	a4	a5	a6	a7	a8
Probability	0.06	0.02	0.3	0.5	0.04	0.01	0.03	0.04

(b) Consider an 8-pixel line grey-scale data, {12, 12, 13, 13, 10, 13, 57, 54}, which has been uniformly quantized with 8-bit accuracy. Construct its 3-bit IGS code. State and explain in brief the type of redundancy which is exploited here to achieve compression.

3. Write short notes on the following :

(a) Fidelity criteria. (b) Transform Coding

4 For a given source $A = \{a1, a2, a3, a4\}$ the following codes were developed. Check for each of them whether it is uniquely decodable or not. Also state which one is the most optimum compared to others and why? (8)

Symbols	Probability	Code 1	Code 2	Code 3
a ₁	0.5	0	0	0
a ₂	0.25	1	10	01
a ₃	0.125	00	110	011
a4	0.125	11	111	0111

5.

- (a) Explain basic data rudendancies. Describe basic compression model used for image 8 compression.
- (b) Classify with reasons, the following data compression techniques into lossy and 8 lossless schemes : (i) Run Length Coding (ii) DCT Compression.
- (c) How many Unique Huffman Codes are there for three symbol source ? Construct 4 these codes.

ELECTRONICS ENGINEERING

6.

What are the different types of redundancies that can be present in a digital image **8** and state which method can be used to remove/reduce them ?

- 7. Obtain Huffman Code for the word "COMMITTEE"
- 8. Draw and explain Block diagram of JPEG Encoder & Decoder. (10 marks)
- 9. Mention different steps employed in coding of images using vector quantization
- 10. Encode the statement "I LOVE IMAGE PROCESSING " using the Arithmetic Coding Procedure

PVPP'S College Of Engineering DEPARTMENT OF

ELECTRONICS ENGINEERING

Chapterwise Plan

Subject T	Title: Digital	Image Pr	ocessing
-----------	----------------	----------	----------

Chapter No. : 5

Chapter Name : Image Transform

Approximate Time Needed : 08 hrs

Lesson Schedule :

Lecture No.	Portion covered per hour		
38	Matrix Theory		
39	Discrete Cosine Transform		
40	Discrete Cosine Transform		
41	Discrete Hadamard Transform		
42	Fast Hadamard Transform		
43	Fast Hadamard Transform		
44	Discrete Wavelet Transform		
45	Discrete Wavelet Transform		

Objectives:

- 1. To learn Efficient representation of visual information
- 2. Ability to capture significant information of an image in a small description.
- 3. To study 1D and 2D unitary transforms and its properties.
- 4. To gain knowledge of several unitary transforms like DFT, DCT, Hadamard and Wavelet Transform and its implementation on images.

(PVPP'S	DEPARTMENT OF
5	College Of Engineering	ELECTRONICS ENGINEERING
	Model Questions:	
	Explain any two properties of 2-dimensional]t ; find its Hadamard transform.	I Fourier transform. (4) If f = [1 0 2 3 (5)
(a) I	Explain the property of Hadamard Transform, $f(x) = \{1, 2, 2, 1\}^{f}$	also find the Hadamard Transform of 8
(b) T	hree column vectors are given below :-	8
2002/01/1998	$\begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} -2 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix}$	
	$\mathbf{x}_{1} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \qquad \mathbf{x}_{2} = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}, \qquad \mathbf{x}_{3} = \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}$	
sh	now that they are orthogonal, also generate all P	ossible Pattern.
	xplain the following Property of Image Transfo	rm 4
(i) Symmetrical (ii) Orthonormal.	
1.	Compute DFT and DCT of the following	Image
	1 3 4 5	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	5 4 3 1	
2.	Show that 2D-DCT can be computed by r	ow and column passes with 1D-DCT algorithm
3.		
4.	For 2x2 transform A and the image U, Co $A = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, U = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$	mpute Transformed image V and the basis image
	$\sqrt{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix}^{\prime} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$	
5.	Justify/ Contradict the following Stateme	nte
5.		arable and symmetric, the transform can be expresse
	in matrix form.	
	b. Walsh Transform is nothing but sequ	ency ordered Hadamard matrix

	PVPP'S	DEPARTMENT OF
	College Of Engineering	ELECTRONICS ENGINEERING
6.	Let $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$. Find Kroned	
	your result.	
7.	Write the expression of DFT. State and expla	ain the properties of 2D-DFT.
8.	Write short note on 2D wavelet Transform I	Filter Bank.
9.	č	forward and inverse transforms and compare the
	inverse transform with the digitized image. $\begin{bmatrix} 2 \\ 1 \\ 1 \\ 2 \end{bmatrix}$	0 1 0 1 0 1 0 0 1 1 2 3
	(i) DFT (ii) DCT	
	., .,	

PVPP'S College Of Engineering DEPARTMENT OF

ELECTRONICS ENGINEERING

Chapterwise Plan

Subject Title: Digital Image Processing

Chapter No. : 6

Chapter Name : Binary Image Processing

Approximate Time Needed : 07 hrs

Lesson Schedule :

Lecture No.	Portion covered per hour				
46	Binary Morphological Operators				
47	Hit-or-Miss Transformation,				
48	Boundary Extraction, Region Filling				
49	Thinning and Thickening				
50	Connected Component Labeling				
51	Iterative Algorithm and Classical Algorithm				
52	Iterative Algorithm and Classical Algorithm				

Objectives:

This chapter gives overview of different operations involved in Binary Image Processing. The objective is to make the students familiar with the following concepts

- 1. Basic idea of mathematical morphology
- 2. Binary morphological operations like thinning, thickening, hit or miss transform etc.

ELECTRONICS ENGINEERING

Model Questions:

- 1. Explain the following operations
 - **1**. Erosion
 - **2.** Dilation
 - **3.** Closing
 - **4**. Opening
- 2. Explain HIT or MISS Transformation
- 3. Explain the importance of boundary extraction. Generate an algorithm to perform the same.
- 4. Explain the following transformation in detail
 - **1**. Thinning
 - **2.** Thickening
 - **3.** Skeletonization
 - **4.** Pruning

DEPARTMENT OF

College Of Engineering _____ ELECTRONICS ENGINEERING

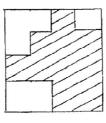
ASSIGNMENT (CASE STUDY)

DATE OF SUBMISSION : 30th September 2015

Group	Case Study
No.	
E1	Digital Watermarking
E2	Face Recognition
E3	Finger print Recognition
E4	Signature Recognition
E5	Vehicle number plate detection and recognition
E6	Object Detection using Correlation principle
E7	Person Tracking using DWT
E8	Handwritten Character recognition
E9	Printed Character Recognition
E10	Content based image retrieval
E11	Text Compression
E12	Image Compression Standards
E13	Image processing techniques for mobile applications
E14	Image Acquisition
E15	Satellite Images
E16	Change Detection
E17	Thresholding
E18	Adaptive Thresholding
E19	Medical Image Processing
E20	Satellite Image Processing

FORMAT FOR CASE STUDY

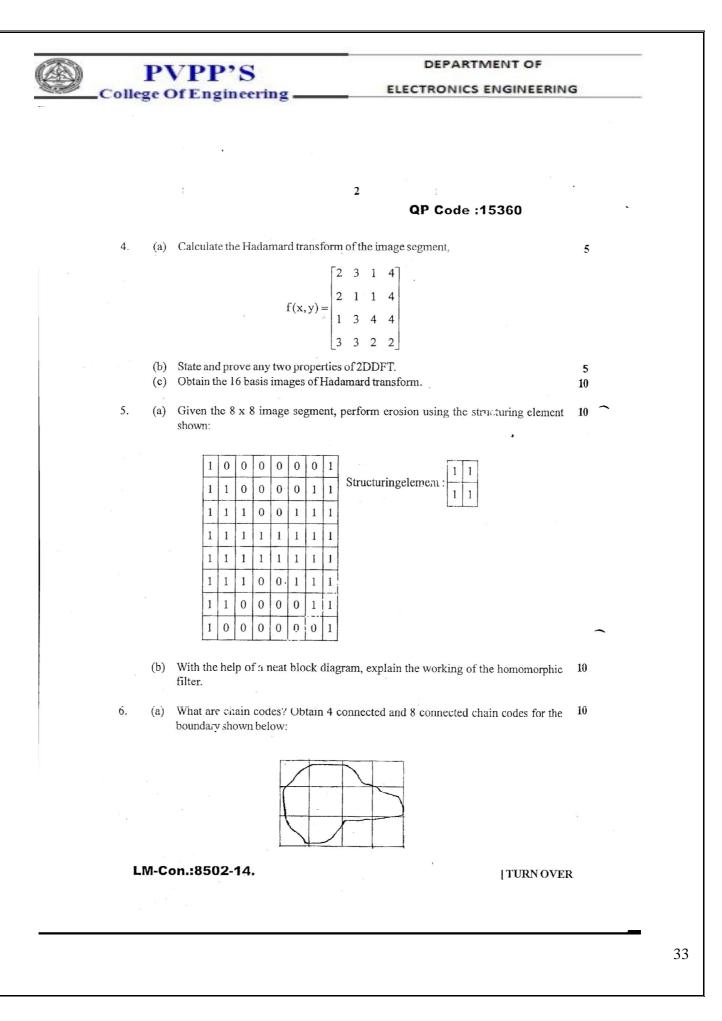
Abstract : Introduction : Literature Survey : Conclusion :


DEPARTMENT OF **PVPP'S** ELECTRONICS ENGINEERING College Of Engineering B. E. ETRX VII (R) 21515 DIPD **QP Code : 8469** Maximum marks 100 **Duration 3 Hours** Instructions : 1. Question No.1 is compulsory. 2. Out of the remaining questions attempt any four. 3. Figures in the bracket indicate maximum marks. Q 1. Answer the following: a) What do you mean by zero memory operations? [05] b) Differentiate between 8 connectivity and m connectivity. [05] [05] c) What is truncated Huffman code? d) Justify the statement: " Laplacian filter is a high pass filter." [25] Q.2. Explain the following enhancement operations and draw the graph of transformation [10] a) function: i) Dynamic range compression ii) Gray level slicing Perform histogram equalization on the following image histogram and plot original and [10] b) equalized histograms.
 Gray Level
 0
 1
 2
 3
 4
 5
 6
 7

 Number of pixels
 550
 300
 0
 0
 0
 200
 325
 225
 03. [10] Explain in detail the types of data redundancies seen in digital images a) b) Explain the method of edge linking using Hough Transform. [10] Q4. a) Calculate the 2DDFT and Hadamard transform of the image segment shown below using [08] matrix multiplication method. 0014 1114 f(x,y) =1010 0202 Explain the importance of kernel separability property of 2DDFT in implementing 2DFFT. [06] b) [06] Differentiate between spatial and tonal resolution. c) Q 5. [10] Explain why it is difficult to threshold images with poor illumination. a) With the help of a neat block diagram, explain the working of a homomorphic filter. [10] b) Q 6. What are Fourier Descriptors? Explain how a two dimensional boundary is represented [10] a) using Fourier Descriptors. [10] Explain how Huffmian code removes coding redundancy. b) [20] Q 7. Write short notes on any four of the following: b) Wavelet transform a) Moments d) Biometric authentication c) Digital water marking Motion based segmentation e)

RJ-Con. 10025-15.

31


DEPARTMENT OF PVPP'S ELECTRONICS ENGINEERING College Of Engineering Elective I Election 1 27/11/2014 Digital I make Processing by stem BE Sem VII QP Code :15360 | Total Marks : 100 (3 Hours) N.B: (1) Question No. 1 is compulsory. (2) Out of the remaining questions attempt any four. (3) Figures in the right indicate maximum marks. Answer any four : 1. (a) Differentiate between spatial and tonal resolutions. 5 5 (b) Why is the sum of coefficients of a high pass filter mask zero? 5 (c) Compare Huffman coding and arithmetic coding; (d) Give 3x3 masks for Laplacian filter, horizontal, vertical, $+45^{\circ}$ and -45° line 5 detectors. 5 (e) Explain dilation and erosion in brief. 10 2. (a) Explain the following enhancement operations and draw the graph of transformation function : (i) Clipping, (ii) Bit plain slicing 10 (b) Perform histogram equalization on the following image histogram and plot original and equalized histograms. **Gray Level** 0 1 4 5 7 2 6 200 300 500 350 0 0 Number of pixels 250 0 3. (a) A source emits 6 symbols with the following probabilities : 10 Symbol В D Е F A C Probability 0.1 0.2 0.05 0.05 0.35 0.25 Construct the Huffman code. Calculate the average code word length and coding efficiency. (b) Perform region splitting and merging on the image segment shown below. Draw the 10 quad tree. Briefly explain the method used.

LM-Con.:8502-14.

[TURN OVER

32

Ð	PVPP'S College Of Engineering	DEPARTMENT OF ELECTRONICS ENGINEERING		
		3 QP Code :15360		
		f data redundancies present in the digital images.	10	
	 7. Write short notes on any four of the fol (a) Opening and closing (b) Color models (c) Finger print recognition (d) Digital water marking (e) Handwritten character recognition 		20	
		· · · · · · · · · · · · · · · · · · ·		
~		,		
	LM-Con.:8502-14.			

PVPP'S College Of Engineering					DEPARTMENT OF ELECTRONICS ENGINEERING						
14-11-13-DTP Con. 848		c	ftei S	ed J Sem	Ma	ge P E	Proce 7 RX	oning J) گوين ه/۱/۱ع LJ-1399(р. 1	
			(Revis	ed Cou	ırse)						
			(3 H	lours)				[Tota]	l Marks : 10	0	
(2)	Question No. Solve any for Assume suita	ir question	ns from the	remain	ning six	questic	ons.				
(a) (b) (c) (d) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	any four of the Reduction in s Huffman codin Butterworth lo It is difficult to Dynamic range The gray level c equalization ar	patial reso ng is a loss owpass filt o segment compressi listribution	olution resu sless comp er is prefer poorly illu on is used i of an image	ilts in c ression red to minate n displa e is show	technic ideal lo d image aying the wn in the	que. wpass f es. Fourie table be	ilter. r transfo elow. Pe	orm of a			
. [Gray level	0 1	• 2	3	4	5	6	7]		
	Frequency of occurrence	0 5	0 100	200	400	200	50	0			
(b)	With the help o	of block di	agram, exp	lain the	e worki	ngofal	Homon	orphic	filter. 10)	
	A 5x5 image set on the same :-	gment is sh	own below	. Perfor	m bitpla	ne slici	ng and l	owpass	filtering 10)	е. С
		6 0 1 4 6	0 0 1 1 5 5	6 7 1 2 2 3 4 2 7 7							
(b) V	With the help of (i) Dilatio (ii) Erosio	n	amples, exp	plain the	e follow	ing mor	phologi	cal opera	ations :- 10		1
4. (a) V	What are the dif	fferent type	es of data re	edundar	ncies for	und in d	igital in	nages ?]	Explain 10)	
i	n detail.										

PVPP'S

ELECTRONICS ENGINEERING

14-11-13-DTP-P-14-AK-21 0 8

Con. 8482-LJ-13990-13.

College Of Engineering -

(b) A source emits six symbols with probabilites as shown in the table below. Construct 10 the Huffman code and calculate the coding efficiency.

2

Symbol	a _l	a ₂	a ₃	a ₄	a ₅	a ₆
Probability	0.05	0.25	0.05	0.15	0.2	0.3

5. (a) Obtain the 2DDFT of the image segment shown below using any one fast algorithm. 10


	Го	0	1	1]
f (x,y)=	1	2	0	0
$I(\mathbf{x},\mathbf{y}) =$	1	0	1	1
	2	0	1	0

- 10 What is Segmentation ? With the help of examples, explain segmentation based (b) on similarity. 10 Explain the following with examples :-6. (a) (i) Signature (ii) Fourier Descriptor. 10 State and prove periodicity and translation properties of 2DDFT. Write the (b) transformation matrices for Hadamard and Fourier transforms for N = 4. 7. Write short notes on any four :-20 (a) Isopreference cuvers (b) Hough transform (c) Digital Water marking (d) Chain codes
 - (e) Biometric Authentication.

3	PVPP'S	DEPARTMENT OF	
2 60	llege Of Engineering	ELECTRONICS ENGINEE	RING
BE-Ele	Anomics - Sem - UN Digital Inscribe Pr	(REV (OURSE) E (REV (OURSE) E (7/12/12	lective-
w2-0	en. 10909–12. (REVI	SED COURSE)	(R-1863 arks : 100
N.	 B.: (1) Question No. 1 is compulsory. (2) Assume suitable data wherever (3) Attempt any four questions from 	r necessary.	
	 State true or false and justify (Any Fo (a) Poorly illuminated images of (b) All Image Compression techni (c) Chain Codes can be made inv (d) The principal operation of mediate intensities to be more like their 	our): can be easily segmented. ques are invertible. ariant to translation and rotation. tian filter is to force points with distinct r neighbors. on the number of pixels and the number of	20
-	2 (a) An image represented by 8 bit/pixel has histogram equalization and give new of	as following gray level distribution. Perform distribution of gray level. 3 4 5 6 7	10
	 (b) Explain Segmentation based on disco 3 (a) Obtain Huffman Code for the word 'Co (b) Explain Homomorphic filtering. 4(a) What are the different types of redund be reduced / eliminated. 		10 10 10 10
		ement techniques on the given Image.	10
<u> </u>	(i) Digital Negative (ii) Bit Plane 2 1 3 7 4 4 5 2 0 1 3 5 1 4 6 0 4 0 2 3 2 1 6 1 4	Slicing (iii) Thresholding	
	(b) Obtain the 4 Directional Chain code for t	he image shown below. Find first Difference and	10
6	(a) For 2x2 transform A and the image U, Com $A = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, U = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$	npute Transformed image V and the basis image 2 4	10
	 (b) Give following masks of size 3×3 and Processing. (i) Sobel (ii) Roberts (iii) 	explain their usefulness in image Low-pass filter (iv) Prewitt (v) Laplacian	10
7			20

60	PV	'PP'S				DEPART	MENT OF	
Co		Engineer	ring_		ELECT	RONICS		RING
	and a	22/12	2011	BE	ETRX	Sem:	VIE (Rev)
PR-Oct. (1 Con.68			(m. m. 14)		ELECT ETRX Digi DURSE)	tal I	mage Pro M	ocessin P-5593
				1 - 14			[Total Ma	
1.7992				(3 Hours)			[rotal me	
N.B. : (* (4 (*	2) Attempt	on No. 1 is cor t any four que a any suitable	estions o	out of rem	aining six qu ry.	estions.		
	(b) Hui (c) Me (d) Qu tha	w pass filter is ffman coding i dian filter is u ality of picture at represent the	is a loss sed to re does no e image	enove sa emove sa ot depend	compression alt and peppe	r noise.		evels
2. (a)	the follow (i) Ima	ing operation age Negative	s-	e with 3 l	bits per pixel	is showr	below. Per	form 10
2. (a)	the follow (i) Ima	ving operation age Negative plane slicing-	s-	e with 3 l	bits per pixel	is showr	i below. Per	form 10
2. (a)	the follow (i) Ima (ii) Bit	ving operation age Negative plane slicing- 7	S		bits per pixel	is showr	ı below. Per	form 10
2. (a)	the follow (i) Imi (ii) Bit	ving operation age Negative plane slicing- 7 5	- 1	2	bits per pixel	is showr	ı below. Per	form 10
2. (a)	the follow (i) Ima (ii) Bit	ving operation age Negative plane slicing- 7 5 4	- 1 3	2 2	bits per pixel	is showr	i below. Per	form 10
(d)	the follow (i) Ima (ii) Bit 0 2 1 3 What do y processin	ving operation age Negative plane slicing- 7 5 4 4 2 you understand ng ? How will	1 1 3 5 5 d by sam I you co	2 2 6 2 npling and nvert an a	quantization analog image	with respe a into a d	ect to digital in igital image.	mage 10
(d)	the follow (i) Ima (ii) Bit 0 2 1 3 What do y processin Discuss	ving operation age Negative plane slicing- 7 5 4 2 you understance ng ? How will advantages robic filtering	1 3 5 5 d by sam I you col of homo with the	2 2 6 2 npling and nvert an a pomorphic help of a	quantization analog image filtering. A	with respe a into a d ulso expl liagram.	ect to digital in igital image. ain the step	mage 10 ps of 10
(d)	the follow (i) Ima (ii) Bit 0 2 1 3 What do y processin Discuss homomo	ving operation age Negative plane slicing- 7 5 4 4 2 you understand ng ? How will	1 3 5 5 d by sam I you col with the of image	2 2 6 2 npling and nvert an a pmorphic help of a segment	quantization analog image filtering. A neat block o tation technic	with respe a into a d Also expl liagram. ques. Ex	ect to digital in igital image. ain the step	mage 10 ps of 10
(b) 3. (a)	the follow (i) Ima (ii) Bit 0 2 1 3 What do y processir Discuss homomo Name dif and merg	ving operation age Negative plane slicing- 7 5 4 2 you understand ng ? How will advantages of rphic filtering y ferent types of ging technique	1 3 5 5 d by sam I you cor of homo with the of image e with th	2 2 6 2 npling and nvert an a pmorphic help of a segment e help of	quantization analog image filtering. A neat block o tation technic an example.	with respe a into a d ulso expl diagram. ques. Ex	ect to digital ir igital image. ain the step plain the spi	mage 10 ps of 10 litting 10
(b) 3. (a)	the follow (i) Ima (ii) Bit 0 2 1 3 What do y processir Discuss homomo Name dif and mer Compare What do y	ving operation age Negative plane slicing- 7 5 4 2 you understand ng ? How will advantages rphic filtering ferent types of	1 3 5 5 d by sam l you co of homo with the of image e with th tract stro d by Had	2 2 6 2 npling and nvert an a belp of a segment e help of etching all amard Tra	quantization analog image filtering. A neat block o tation technic an example. nd histogram	with respe a into a d liso expl liagram. ques. Ex	ect to digital in igital image. ain the step plain the spi tion.	mage 10 ps of 10 litting 10 10
(b) 3. (a) (b) 4. (a) (b) 5. (a)	the follow (i) Ima (ii) Bit (ii) Bit 0 2 1 3 What do y processir Discuss homomo Name dif and mer Compare What do y Discuss homomo Name dif And mer Discuss	ving operation age Negative plane slicing- 7 5 4 2 you understand ng ? How will advantages forent types of ging technique	1 3 5 5 d by sam l you co of home with the of image e with th htract stre d by Had Hadama	2 2 6 2 ppling and nvert an a pomorphic help of a segment e help of etching all amard Transf ard Transf	quantization analog image filtering. A neat block o tation technic an example. nd histogram ansform? Wri form.	with respe a into a d liagram. ques. Ex equaliza te a 4 × 4 n digital i	ect to digital in igital image. ain the step plain the sp tion. Hadamard M mage.	mage 10 ps of 10 litting 10 Matrix. 10 10

Ð	PVPP'S College Of Engineering	DEPARTMENT OF ELECTRONICS ENGINEERING
6,	 (a) How will you detect following in a (i) Point (ii) Line (iii) Edge. (b) Define two dimensional Discrete for properties of 2D – DFT in detail. 	digital image ? 10 Fourier Transform (2D – DFT). Explain the 10
7.	Write short notes on the following :- (a) Biometric Authentication (b) Dilation and Erosion (c) Digital Watermarking (d) Lossless Compression.	20

SH 2015

IC TECHNOLOGY

Mrs.Deepali H. Bhosale

College Of Engineering	DEPARTMENT OF ELECTRONICS ENGINEERING
Subjec	t Plan
GROUP NAME : VLSI	
COURSE TITLE : IC Technology	
COURSE CODE : EXC 702	
SEM : VII (SH 2015)	
PRE-REQUISITE : Digital Circuit Design, DLIC	; Basic VLSI Design

RATIONALE

An integrated circuit or monolithic integrated circuit (also referred to as an IC, a chip, or a microchip) is a set of electronic circuits on one small plate ("chip") of semiconductor material, normally silicon. This can be made much smaller than a discrete circuit made from independent electronic components. ICs can be made very compact, having up to several billion transistors and other electronic components in an area the size of a fingernail. The width of each conducting line in a circuit can be made smaller and smaller as the technology advances; in 2008 it dropped below 100 nanometers, and has now been reduced to tens of nanometers. Integrated circuits are used in virtually all electronic equipment today and have revolutionized the world of electronics. Computers, mobile phones, and other digital home appliances are now inextricable parts of the structure of modern societies, made possible by the low cost of integrated circuits. Cost is low because the chips, with all their components, are printed as a unit by photolithography rather than being constructed one transistor at a time. Furthermore, packaged ICs use much less material than discrete circuits.

OBJECTIVES:

- 5. Become familiar with different crystal growth technique
- 6. Understand CMOS fabrication Flow
- 7. To teach fundamentals of fabrication of VLSI devices and circuits
- 8. Provide knowledge about packaging and testing of Integrated circuits
- 9. Understand advanced semiconductor technologies
- 10. To disseminate knowledge about novel VLSI devices

DEPARTMENT OF ELECTRONICS ENGINEERING

OUTCOME :

- 1. Understand the physics of crystals and different crystal growth techniques.
- 2. demonstrate a clear understanding of CMOS fabrication flow and technology scaling
- 3. demonstrate a clear understanding of various MOS fabrication processes, semiconductor measurements, packaging, testing and advanced semiconductor technologies
- 4. discuss physical mechanism in novel devices
- 5. verify processes and device characteristics via simulations

LEARNING RESOURCES: -

RECOMMENDED BOOKS: -

- 1. James D. Plummer, Michael D. Deal and Peter B. Griffin, "Silicon VLSI Technology", Pearson, Indian Edition.
- 2. Stephen A. Campbell, "*The Science and Engineering of Microelectronic Fabrication*", Oxford University Press, 2nd Edition.
- 3. Sorab K. Gandhi, "VLSI Fabrication Principles", Wiley, Student Edition.
- 4. G. S. May and S. M. Sze, "Fundamentals of Semiconductor Fabrication", Wiley, First Edition.
- 5. Kerry Bernstein and N. J. Rohrer, "SOI Circuit Design Concepts", Kluwer Academic Publishers, 1st edition.
- 6. Jean-Pierre Colinge, "FinFETs and Other Multigate Transistors", Springer, 1st edition
- 7. M. S. Tyagi, "Introduction to Semiconductor Materials and Devices", John Wiley and Sons, 1st edition.
- 8. James E. Morris and Krzysztol Iniewski, "Nanoelectronic Device Applications Handbook", CRC Press
- 9. Glenn R. Blackwell, "The electronic packaging", CRC Press
- 10. Michael L. Bushnell and Vishwani D. Agrawal, "Essentials of Electronic Testing for digital, memory and mixed-signal VLSI circuits", Springer

COURSE MATERIALS MADE AVAILABLE

- 1. Course instructional objectives & outcomes
- 2. Syllabus
- 3. Chapter wise Question Bank

Evaluation :

PVPP'S College Of Engineering

DEPARTMENT OF

ELECTRONICS ENGINEERING

Theory Exam	80 M
Internal assessment: The average marks of Mid-term test (20 M) & End-	20 M
term test (20 M) will be considered as final IA marks	
Oral	25 M
Term Work	25 M
Total	150 M

List of Experiments

At least 8 experiments based on the entire syllabus

Expt.	Name of the Experiments
No.	
1	Draw and simulate layout for the CMOS inverter.
2	Draw and simulate layout for the CMOS NAND and CMOS NOR circuits.
3	Draw and simulate layout for the given equation
4	Draw and simulate layout for SR latch D flip Flop circuits
5	Draw and simulate layout for 6T SRAM cell.
6	Simulate oxidation process with Deal-Grove model for different conditions
	(e.g. oxidation type, orientation, time, temperature, thickness etc.) and
	comment on the results obtained.
7	Simulate MOS capacitor (Classical Simulation) for single gate device for a
	typical value of fixed charge density and interface trap charge density in
	gate insulator. Do the AC analysis and comment on the results obtained.
8	Simulate n type and p type MOSFETs (bulk, SOI and Double Gate) to
	obtain family of I D-VG and ID- VD characteristics. Compare the results
	obtained.
9	Simulate Carbon Nanotube MOSFET for different conditions (e.g.
	gate/drain voltage sweep, threshold voltage etc.) and comment on the
	results obtained.
10	Simulate FinFET to plot energy band diagram and IV characteristics for
	different values of gate and drain bias. Comment on the results obtained.

<u></u>	PP'S DEPARTMENT OF Engineering ELECTRONICS ENGINEERIN
	Chapterwise Plan
ject Title: IC Tech	nology
pter No. : 1	
roximate Time Ne	eded : 08 hrs
son Schedule :	
son Schedule : Lecture No.	Portion covered per hour
son Schedule : Lecture No. 1	Portion covered per hour Introduction
son Schedule : Lecture No. 1 2	Portion covered per hour Introduction Semiconductor technology trend
son Schedule : Lecture No. 1 2 3	Portion covered per hour Introduction Semiconductor technology trend Clean rooms
son Schedule : Lecture No. 1 2 3 4	Portion covered per hour Introduction Semiconductor technology trend Clean rooms Wafer cleaning
son Schedule : Lecture No. 1 2 3 4 5	Portion covered per hourIntroductionSemiconductor technology trendClean roomsWafer cleaningPhase diagram and solid solubility

Objectives:

- 1. To teach Physics of crystals and different crystal growth techniques
- 2. Learn the need of wafer cleaning

ELECTRONICS ENGINEERING

Model Questions:

- 1. Describe the RCA cleaning process
- 2. Describe SC1 and SC2 cleaning process
- 3. Describe the different methods adopted for reducing the contamination in IC fabrication process
- 4. Explain the significance of phase diagram and solid solubility in IC fabrication with suitable examples.
- 5. Discuss different types of crystal defects in semiconductor?
- 6. With neat diagram explain the crystal growth using CZ method
- 7. With neat diagram explain the Float Zone technique of crystal growth

DEPARTMENT OF

College Of Engineering _____ ELECTRONICS ENGINEERING

Chapterwise Plan

Subject Title: IC Technology

Chapter No. : 2

Chapter Name : Fabrication Processes Part 1

Approximate Time Needed : 10 hrs

Lesson Schedule :

Lecture No.	Portion covered per hour
9	Deposition: Evaporation
10	Sputtering and Chemical Vapor Deposition
11	Epitaxy: Molecular Beam Epitaxy, Vapor Phase
	Epitaxy, Liquid Phase Epitaxy
12	Silicon Oxidation: Thermal oxidation process, Kinetics
	of growth
13	Properties of Silicon Dioxide, Oxide Quality, high κ and
	low κ dielectrics
14	Diffusion: Nature of diffusion, Diffusion in a
	concentration gradient
15	diffusion equation, impurity behavior, diffusion systems
16	Problems in diffusion, evaluation of diffused layers
17	Ion Implantation: Penetration range, ion implantation
	systems
18	Process considerations, implantation damage and
	annealing

College Of Engineering _____

ELECTRONICS ENGINEERING

Objectives:

1. Understand different techniques for Deposition, Epitaxy, Oxidation

PVPP'S

2. Understand CMOS fabrication Flow

Model Questions:

- 1. Describe different reactors used for vapor phase epitaxy process
- 2. How evaluation of the following parameters are done for epitaxial layer:
 - a. Sheet Resistance
 - b. Layer Thickness
 - c. Mobility and Carrier Concentration
 - d. Impurity
- 3. Explain MBE process and list its advantages
- 4. Develop the equations to describe the oxidation process (Deal-Grove model)
- 5. Describe dopant redistribution during oxidation
- 6. What are linear and parabolic regimes of oxidation?
- 7. Describe the furnaces used for oxidation
- 8. What are the reactions of dry oxidation and wet oxidation? Differentiate between these two methods.
- 9. Differentiate between high k and low k dielectrics
- 10. Explain different types of oxide charges
- 11. Write the equations and boundary conditions for
 - a. Constant source diffusion
 - b. Limited source diffusion
- 12. Write the mathematical equation describing the dopant profile for
 - a. Constant source diffusion
 - b. Limited source diffusion
- 13. Describe the problems that arise due to dopant redistribution
- 14. What is lateral diffusion?
- 15. What is gettering?
- 16. Solve the differential equation for constant source diffusion
- 17. Describe the diffusion process, including the equipment used

College Of Engineering _____ ELECTRONICS ENGINEERING

Chapterwise Plan

Subject Title: IC Technology

Chapter No. : 3

Chapter Name : Fabrication Processes Part 2

Approximate Time Needed : 10 hrs

Lesson Schedule :

Lecture No.	Portion covered per hour
19	Etching: Wet chemical etching, dry physical etching,
	dry chemical etching
20	reactive ion etching, ion beam techniques
21	Lithography: Photoreactive materials, Pattern generation and mask making, pattern transfer
22	Electron beam, Ion beam and X-ray lithography
23	Device Isolation, Contacts and Metallization: Junction and oxide isolation
24	LOCOS, trench isolation, Schottky contacts, Ohmic contacts
25	Metallization and Packaging
26	CMOS Process Flow: N well, P-well and Twin tub
27	Design rules, Layout of MOS based circuits
28	Layout Example. Buried and Butting Contact

Objectives:

- 1. Understand various CMOS fabrication processes
- 2. To teach fundamentals of fabrication of VLSI devices and circuits

PVPP'S College Of Engineering -

ELECTRONICS ENGINEERING

Model Questions:

- 1. Draw the device cross sections for the important steps in fabrication of PMOS transistor
- 2. Draw the device cross sections for the important steps in n-well CMOS process
- 3. Draw the device cross sections for the important steps in p-well CMOS process
- 4. Draw the device cross sections for the important steps in twin tub CMOS process
- 5. Draw layout for the CMOS inverter
- 6. Draw layout for the 6T SRAM cell
- 7. Draw layout for two input XOR gate
- 8. Draw layout for two input NAND gate
- 9. Draw layout for two input NOR gate
- 10. Darw layout for 1T DRAM cell
- 11. What are isotropic and an-isotropic etching?
- 12. Give examples of reactions involved in dry etching
- 13. Describe plasma etching process with schematics
- 14. What is loading effect in etching
- 15. Describe Reactive Ion Etching (RIE) process
- 16. Describe the ion beam technique used for etching
- 17. Describe the basic PVD process, with schematics
- 18. Describe the RF sputtering process, with schematics
- 19. Describe the mask making process
- 20. Describe the lithographic process in detail
- 21. Explain the difference between contact, proximity and projection printing
- 22. Discuss electron beam lithography in detail
- 23. Differentiate between positive and negative photoresist
- 24. Describe the following methods of isolation in integrated circuit'

PVPP'S College Of Engineering DEPARTMENT OF

ELECTRONICS ENGINEERING

Chapterwise Plan

Subject Title: IC Technology

Chapter No.: 4

Chapter Name : Measurements, Packaging and Testing

Approximate Time Needed : 10 hrs

Lesson Schedule :

Lecture No.	Portion covered per hour
29, 30	Semiconductor Measurements: Conductivity type, Resistivity
31,32	Hall Effect Measurements, Drift Mobility
33,34	Minority Carrier Lifetime and diffusion length
35	Packaging: Integrated circuit packages
36	Electronics package reliability
37	Testing: Technology trends affecting testing
38	VLSI testing process and test equipment, test economics and
	product quality

Objectives:

- 1. Provide an understanding of semiconductor measurements.
- 2. Provide knowledge about packaging and testing of Integrated circuits

Model Questions:

- Q.1 Explain the concept of Hall effect measurements and drift mobility
- Q.2. Explain in detail minority Carrier Lifetime and diffusion length

ELECTRONICS ENGINEERING

Chapterwise Plan

Subject Title: IC Technology

Chapter No. : 5

Chapter Name : SOI, GaAs and Bipolar Technologies

Approximate Time Needed : 08 hrs

Lesson Schedule :

Lecture No.	Portion covered per hour
39	SOI Technology: SOI fabrication using SIMOX, Bonded
	SOI and Smart Cut
40	PD SOI and FD SOI Device structure and their features
41	GaAs Technologies: MESFET Technology
42	Digital Technologies, MMIC technologies and
43	MODFET and Optoelectronic Devices
44	Silicon Bipolar Technologies: Second order effects in
	bipolar transistor
45	Performance of BJT, Bipolar processes
46	BiCMOS and comparison of Technologies

Objectives:

Understand advanced semiconductor technologies

Model Questions:

Q.1. Explain in detail minority Carrier Lifetime and diffusion length

Q.2 What are MODFET and Optoelectronic Devices?

2	PP'S DEPARTMENT OF f Engineering ELECTRONICS ENGINEERIN
	Chapterwise Plan
ect Title: IC Te	chnology
oter No. : 6	
oter Name : No	vel Devices
oximate Time I	Needed : 06 hrs
oximate Time I	Needed : 06 hrs
	Needed : 06 hrs Portion covered per hour
on Schedule :	
on Schedule : Lecture No.	Portion covered per hour
on Schedule : Lecture No. 47	Portion covered per hour Multigate Device:Various multigate device configurations
on Schedule : Lecture No. 47 48	Portion covered per hour Multigate Device:Various multigate device configurations Device structure and important features
on Schedule : Lecture No. 47 48 49	Portion covered per hour Multigate Device:Various multigate device configurations Device structure and important features Nanowire: Fabrication and applications
on Schedule : Lecture No. 47 48 49	Portion covered per hourMultigate Device:Various multigate device configurationsDevice structure and important featuresNanowire: Fabrication and applicationsGraphene Device:Carbon nanotube transistor fabrication,

Objectives:

To disseminate knowledge about novel VLSI devices

Model Questions:

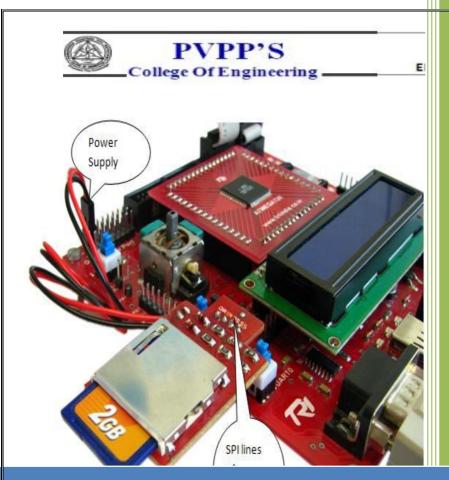
- Q.1 State all advantages of FINFET Devices over a single gate MOSFET Device.
- Q.2 Explain CNT with its advantages ,disadvantages and its applications.

PVPP'S College Of Engineering DEPARTMENT OF

ELECTRONICS ENGINEERING

Assignments

ASSIGNMENT 1 (DATE : 14th AUGUST 2015)


- Q.1 Explain Float zone crystal growth process and Czochralski growth process. what is necessity of crystal growth process
- Q.2. Explain the process of Bridgman growth of GaAs.
- Q.3 Explain Ion implantation process in detail, also state the Gaussian expression associated with it.
- Q.4.Write the kinetics of silicon growth in detail ,also state the use of high k and low k materials in semiconductor manufacturing technology.
- Q.5. Draw a layout of 2 i/p CMOS NAND gate by applying appropriate <code>l</code> based design rules.

ASSIGNMENT 2 (DATE : 4th October 2015)

Q.1. Explain the concept of Hall effect measurements and drift mobility

- Q.2. Explain in detail minority Carrier Lifetime and diffusion length
- Q.3 What are MODFET and Optoelectronic Devices?
- Q.4 Write features of SOI and MESFET Device structures
- Q.5 State all advantages of FINFET Devices over a single gate MOSFET

Device.

SH-2015

EMBEDDED SYSTEMS DESIGN

Mrs.Anagha Dhavalikar

ELECTRONICS ENGINEERING

Subject Plan

DEPERTMENT : ELECTRONICS ENGINEERING

COURSE TITLE: Embedded System Design

COURSE CODE: B.E. Elex

SEM : VII

PRE-REQUISITE : Microprocessor and Peripherals, Microcontroller &

Applications

RATIONALE

The aim of the subject is to introduce the students to the concept of Embedded Systems and their application areas. Knowledge of embedded processors like ARM, MSP 430, helps the students to use them while designing an application specific system.

OBJECTIVES:

- 1. To understand scope, usage, requirements, challenges and general design methodology of embedded system.
- 2. To thoughtfully apply hardware and software knowledge to develop embedded system applications according to requirement and constraints.
- Apply concepts introduced in class to implement a project that utilizes embedded design methodologies and development tools.
- 4. Learn Real-Time hardware and software architecture and development techniques.

PVPP'S College Of Engineering -

DEPARTMENT OF ELECTRONICS ENGINEERING

OUTCOME:

- Learn to interpret design requirement; relative importance of design goals, constraints, and metric, component's functional and electrical specifications, its implication and advantage in design.
- 2. Select/choose right components, approach and method to develop optimal/competitive system.
- 3. Knowledge and understanding of fundamental embedded systems design paradigms, architectures, possibilities and challenges, both with respect to software and hardware.
- 4. Ability to analyze a system both as whole and in the included parts, to understand how these parts interact in the functionality and properties of the system, and properties of the system.

COURSE MATERIALS MADE AVAILABLE

- 1. Course instructional objectives & outcomes
- 2. Syllabus
- 3. Chapter wise Question Bank

Recommended Books:

- 1. Embedded Systems, Rajkamal , TMH, 2008.
- 2. Frank Vahid Embedded Systems , Wiley India, 2002
- 3. ARM System-on-Chip Architecture, Steve Furber Pearson 2005
- 4. Jean J Labrose MicroC / OS-II, Indian Low Price Edition 2002
- 5. DR.K.V.K.K. Prasad Embedded / real time system, Dreamtech
- 6. Iyer, Gupta Embedded real systems Programming, TMH
- 7. Embedded systems software primer, David Simon Pearson
- 8. ARM System Developers Guide- Sloss, Symes, Wright, ElsevierMorgan Kaufman, 2005
- 9. LPC2148 Data Sheets www.arm.com
- 10. ARM Programmers/architectural manual.
- 11. MSP430 architectural manual.

12. Embedded Microcomputer Systems – Real Time Interfacing – Jonathan W. Valvano; Cengage Learning; Third or later edition.

ELECTRONICS ENGINEERING

Internal Assessment (IA): Two tests must be conducted which should cover at least 80% of

syllabus. The average marks of both the test will be considered for final internal assessment.

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of
- 2 to 5 marks will be asked.
- 4. Remaining question will be selected from all the modules.

List of Experiments

Suggested Laboratory Experiments:

Expt. No.	Name of the Experiments
1	Study of general hardware interfacing
2	Serial communication (between controller boards or/& any other device)
3	C-programming using GCC
4	RTOS µCOS – II IPC using message Queue
5	RTOS µCOS – II IPC using mailbox
6	RTOS µCOS – II shared resources using semaphore
7	Emulation hardware using ICE, using Logic Analyser, JTAG
8	Embedded Router Development / study
9	Embedded System Design (Theoretical design)

DEPARTMENT OF

College Of Engineering _____ ELECTRONICS ENGINEERING

Chapter wise Plan

Subject Title: Embedded System Design

Chapter No. : 1

Chapter Name : Embedded System in general

Approximate Time Needed : 8 hrs

Lesson Schedule :

Lecture	Portion covered per hour		
No.			
1	Core of the embedded system (ASIC, SoC, GPP, DSP, IP Core)		
2	Memory, Sensors/input devices (resistive, optical, position, thermal,		
	acceleration/gravity, touch-screen), Actuators/output devices (solenoid valves,		
	relay/switch, opto-couplers, 16x2 alphanumeric display)		
3	Communication Interface, Embedded firmware (Boot-loader, RTOS, Drivers,		
	Application programs), Power-supply (Battery technology, Solar), PWM		
	generation, Supervisory Circuits (Watchdog, reset), PCB and Passive		
	components. Safety, reliability, environmental, EM-radiation issues.		
4	Characteristics, quality attributes and optimization challenges of Design		
	Metric in embedded system.		
5	Real time system's requirements, real time issues.		
6	Hard/soft real-time systems interrupt latency.		
7	Embedded Product development life cycle, Program modelling concepts: DFG		
8	State machine programming models (FSM, Petri-net), Modelling for multi-		
	processor systems, UML.		

Objectives: To teach students :-

- 1. Different cores in embedded system
- 2. Types of embedded memories and various other interfaces.

Outcomes: students will learn:-

- 1. What do we mean by embedded systems.
- 2. Various embedded cores and memories

DEPARTMENT OF

_College Of Engineering _____ EL

ELECTRONICS I	ENGINEERING
---------------	-------------

Mod	el Questions:			
No.	Questions		Year	Marks
1	Differentiate between RISC and CISC Proces	ssors.	May-2011	6
			Dec-2012	5
2	Write a note on Watchdog timer.		May-2011	5
3	Explain the interface of Alphanumeric LCD w of your choice. (Draw neat diagram).	ith any micro controller	May-2011	7
4	What is interrupt latency in Embedded syster to reduce latency.	ns? Suggest methods	May-2011	10
5	Explain what the Linear sequential model in E development is.	Embedded software	May-2011	10
6	Explain the various program modelling techni embedded system design.	iques used in	May-2011	10
7	Explain different types of Embedded memorie	es.	May-2011 Dec-2011	5
8	What is H/W and S/W co-design?		May-2012	5
9	Draw and explain Petrinet model.		May-2012	3
10	Explain System on Chip (SOC).		May-2012	5
11	III) Time to Market IV	hallenges met by an) Power Consumption) Memory space /I) Cost	Dec-2012	12
12	Explain classification of Embedded system w	ith suitable examples.	Dec-2012	8
13	Discuss design metric issues faced while des system with the help of an example.	signing an embedded	May-2013	5
14	Discuss and compare various embedded mic	ro controller cores like	May-2013	5

16What is H/W and S/W co-design?Dec-2013517with the help of suitable diagram explain: i) LCD interfaceMay-201410	Ċ	PVPP'S College Of Engineering EL	DEPARTMENT OF ECTRONICS ENGINEERING	l
 What is H/W and S/W co-design? Dec-2013 with the help of suitable diagram explain: i) LCD interface ii) Hex keypad interface. Discuss design metric issues in designing an embedded system. May-2014 5 		RISC, CISC, SOC, ARM.		
17with the help of suitable diagram explain: i) LCD interfaceMay-20141018Discuss design metric issues in designing an embedded system.May-20145	15	Differentiate between RISC and CISC processor.	Dec-2013	5
i) LCD interfaceii) Hex keypad interface.18Discuss design metric issues in designing an embedded system.May-20145	16	What is H/W and S/W co-design?	Dec-2013	5
	17		May-2014	10
	18		ed system. May-2014	5

DEPARTMENT OF

College Of Engineering _____ ELECTRONICS ENGINEERING

Chapterwise Plan

Subject Title: Embedded System Design

Chapter No. : 2

Chapter Name : Embedded Serial Communication

Approximate Time Needed : 4 hrs

Lesson Schedule :

Lecture No.	Portion covered per hour
9	Study of basic communication protocols like SPI, SCI
10	(RS232, RS485), I ² C, CAN,
11	Field-bus (Profibus), USB (v2.0), Bluetooth,
12	Zig-Bee, introduction to wireless sensor networks.

Objectives: To teach student:-

- 1. Basic communication protocols.
- 2. Wireless sensor networks.

Outcomes: students will learn:-

1. Basic communication protocols and their functions.

Model Questions

1	Write a note on Serial Peripheral Interface (SPI)	May-2011	5
		Dec-2011	5
		Dec-2012	5
2	Write short note on : Difference between RS232 and RS 485	Dec-2011	5
		Dec-2012	5
3	Write a detailed note on the CAN Bus explaining its features and	May-2011	7
	protocols.	Dec-2012	5
4	Draw and explain data frame format of CAN bus.	May-2012	5

C	PVPP'S DEPARTME College Of Engineering ELECTRONICS EN		
5	Write short note on: SPI and SCI port.	May-2012	5
6	Explain various basic serial communication methods.	May-2013	5
7	With the help of suitable block diagram explain: i) Graphic LCD ii) RS 232/485 iii) PWM DC motor (speed control) interfacing	May-2013	10
8	Give need for interprocess communication and synchronization. Describe the methods of the same (IPC) in detail.	May-2013	10
9	Give features of CAN and explain protocol.	May-2013	5
10	Draw and explain CAN bus frame format.	Dec-2013	5
11	Describe with suitable diagram, SPI interface.	Dec-2013	5
12	Discuss layered architecture of CAN node. Elaborate Transfer layer with regards to massage framing and arbitration.	May-2014	10
13	Techniques used in Interprocess Communication in Embedded System.	May-2014	5

DEPARTMENT OF

College Of Engineering _____ ELECTRONICS ENGINEERING

Chapterwise Plan

Subject Title: Embedded S	ystem Design
---------------------------	--------------

Chapter No. : 3

Chapter Name : Embedded Hardware and Design

Approximate Time Needed : 12 hrs

Lesson Schedule :

Lecture No.	Portion covered per hour	
13	Processor/Controller based case studies of: Low power hardware	
	design(real time clock /PWM)	
14	High Performance hardware design (media/entertainment), dc motor control	
15	Low-cost hardware design (toy); Small and light weight design (Satellite/RC-	
	plane controllers).	
16	Introduction to ARM-v7-M (Cortex-M3)	
17	Architecture, Internal organisation	
18	ARM-v7-A (CortexA8)	
19	Architecture, Internal organisation	
20	ARM-v7-R (CortexR4)	
21	Architecture, Internal organisation	
22	Comparison between Cortex Processors	
23	Direct digital solution using CPLD, FPGA, its advantages	
24	introduction to related development methodology (vhdl, verilog)	

Objectives: To teach students:-

1. Hardware design methodologies

- 2. Different ARM-v7-M Cortex series.
- 3. Direct digital solution using CPLD, FPGA, its advantages

Outcomes: student will learn:-

- 1. Different Processors of Cortex series.
- 2. vhdl, verilog

(Z	PVPP'S	DEPARTMENT OF	
		RONICS ENGINEERING	
Mod	lel Questions		1
No.	Questions	Year	Marks
1	Explain various operating modes of ARM/ARM7 processo	rs. May-2011	10
		Dec-2011	10
		Dec-2012	10
2	Explain the register set of MSP-430 RISC controller (work	ing May-2011	10
	registers, SFRs, Status registers etc.)	Dec-2012	10
3	Write a detailed note on THUMB mode of operation of AR processor.	M May-2011	10
4	Write a note on Digital Signal Controllers.	May-2011	5
		Dec-2011	5
		Dec-2012	5
5	Briefly explain Exceptions of ARM7	Dec-2011	10
6	Explain address space (Memory map) of MSP – 430.	Dec-2011	10
7	Explain basic clock model of MSP-430.	Dec-2011	10
		May-2012	10
8	Explain functions of different registers available in ARM7.	May-2012	5
9	Draw and explain status register structure of MSP 430.	May-2012	5
10	Explain different Exceptions which occur in MSP - 430	May-2012	5
11	Explain Processor modes of ARM7, also specify different instruction used to exchange branch from ARM mode to T mode.	5	10
12	Explain different addressing modes of ARM7TDMI.	May-2012	10
13	Draw MSP 430 architecture and write its specifications.	Dec-2012	5
14	Explain why ARM processor is one of the most commonly bit embedded processor. Draw architecture of ARM7 TDM processor.		10
15	Describe addressing modes of MSP 430 or ARM7TDMI.	May-2013	5

P	1.2	-
		~

_College Of Engineering _____ ELECTRONICS ENGINEERING

16	Describe the operating modes and basic clock modules of MSP 430.	May-2013	10
17	Provide description of exceptions in ARM7TDMI (interrupts).	May-2013	10
18	Explain THUMB mode of ARM7TDMI core and compare it with normal mode.	May-2013	10
19	Explain status register of MSP 430.	Dec-2013	5
20	Explain operating modes of ARM 7 and also explain Registers available in each mode.	Dec-2013	10
21	Explain clock circuit and registers used to control function of clock module of MSP 430.	Dec-2013	10
22	Compare and explain ARM7 with ARM7TDMI.	Dec-2013	10
23	Explain Interrupt Latency with example and what are the factors responsible for Interrupt Latency?	Dec-2013	5
24	Explain SPI protocol for serial communication.	May-2014	5
25	Explain clock circuit and registers used to control function of clock module of MSP 430.	May-2014	10
26	Stock implementation in ARM72	May-2014	5

DEPARTMENT OF

College Of Engineering _____ ELECTRONICS ENGINEERING

Chapterwise Plan

Chapter No. : 4

Chapter Name : Embedded Software, Firmware Concepts and Design

Approximate Time Needed : 16 hrs

Lesson Schedule :

Lecture	Portion covered per hour
No.	
25	Embedded C-programming concepts (from embedded system and real-
	time requirement's perspective): Optimizing for Speed/Memory needs,
	Interrupt service routines, macros, functions, modifiers, data types,
26	Device drivers, Multithreading programming. C-statements using switch,
	while and its ARM-assembly language equivalents. P and V semaphore
	functions in C.
27	Basic embedded C programs/applications for ARM-v7, using ARM-GCC-
	tool-chain, Emulation of ARM-v7 (e.g. using QEMU), and Linux porting on
	ARM-v7 (emulation) board.
28	Porting of RTOS on ARM-v7 (emulation) board, Application developments using
	μCOS-II.
29	Real time operating system: POSIX Compliance
30	Need of RTOS in Embedded system software
31	Foreground/Background systems, multitasking
32	context switching, IPC, Scheduler policies
33	Architecture of kernel, task scheduler
34	ISR, Semaphores, mailbox, message queues
35	pipes, events, timers, memory management
36	RTOS services in contrast with traditional OS
37	Introduction to μCOS -II RTOS, study of kernel structure of μCOS -II,

S.	EVPP'S	PARTMENT OF	E				
	Synchronization in µCOS-II						
	38 Inter-task communication in µCOS-II, Memory management in µCOS-II						
	³⁹ Introduction Linux OS (Android as an example), Linux IPC usage						
	40 Basic Linux device drivers and its usage						
)bje	ectives: To teach students:-						
	1. Embedded C-programming concept	IS					
. .	2. Different elements in C.						
Jutc	comes: student will learn:-						
	1. How to write a program in embedded C.						
Mod	lel Questions						
No.	Questions	Year	Marks				
1	Differentiate between Object Oriented and Procedure langua	age Dec-2011	5				
2	Suggest various techniques used for interprocess communic an embedded system with relevant examples. Also explain	cation in May-2011	15				
	strategies used for synchronization between processes.						
3	strategies used for synchronization between processes.With the help of a neat diagram, explain the different states a can be in and the transitions between them.	a task May-2011	5				
	With the help of a neat diagram, explain the different states a		5				
3 4 5	With the help of a neat diagram, explain the different states a can be in and the transitions between them.						
4	With the help of a neat diagram, explain the different states a can be in and the transitions between them. Explain Data Structures, Queue, Circular Queue, Linked List	t, Array. May-2012	10				
4 5 6	With the help of a neat diagram, explain the different states a can be in and the transitions between them. Explain Data Structures, Queue, Circular Queue, Linked List Explain task and task states.	t, Array. May-2012 Dec-2011	10 5				
4 5 6 7	 With the help of a neat diagram, explain the different states a can be in and the transitions between them. Explain Data Structures, Queue, Circular Queue, Linked List Explain task and task states. Discuss various types of Semaphore in detail. Explain in detail Mutex, Pipes, Queues and Mailboxes. 	t, Array. May-2012 Dec-2011 Dec-2011	10 5 10				
4	With the help of a neat diagram, explain the different states a can be in and the transitions between them. Explain Data Structures, Queue, Circular Queue, Linked List Explain task and task states. Discuss various types of Semaphore in detail.	t, Array. May-2012 Dec-2011 Dec-2011 Dec-2011	10 5 10 10				
4 5 6 7 8	 With the help of a neat diagram, explain the different states a can be in and the transitions between them. Explain Data Structures, Queue, Circular Queue, Linked List Explain task and task states. Discuss various types of Semaphore in detail. Explain in detail Mutex, Pipes, Queues and Mailboxes. 	t, Array. May-2012 Dec-2011 Dec-2011 Dec-2011 Dec-2011 Dec-2011 Dec-2012	10 5 10 10 5				
4 5 6 7	 With the help of a neat diagram, explain the different states a can be in and the transitions between them. Explain Data Structures, Queue, Circular Queue, Linked List Explain task and task states. Discuss various types of Semaphore in detail. Explain in detail Mutex, Pipes, Queues and Mailboxes. Write short note on: Interposes communication. 	t, Array. May-2012 Dec-2011 Dec-2011 Dec-2011 Dec-2011 Dec-2011 Dec-2012	10 5 10 10 5 5 5				

E	PVPP'S DEPARTME ELECTRONICS EN		
	College Of Engineering ELECTRONICS EN		
11	What is shared data problem? Explain different types of semaphores.	Dec-2012	10
12	Write short notes on: Different states of tasks.	Dec-2012	5
13	With the help of suitable examples, describe following C-program elements i) Header File ii) Pre-processor Directives iii) Macro functions iv) Modifiers v) Link-List	May-2013	10
14	Describe embedded programming tools like compiler, cross complier, integrated development environment, debugging tools in circuit emulator	May-2013	5
15	Differentiate between procedures and object oriented language.	Dec-2013	5
16	Explain Data Structure Queue, Circular Queue, Link list and Array with respect to Embedded C Programming.	Dec-2013	10
17	Justify use of C programming for embedded software development.	May-2014	5
18	Explain data structure queue, circular queue, Link list and array in embedded system.	May-2014	10
19	Write ARM assembly language program to implement $\sum_{l=1}^{N} flXl for l = 1 toN$	May-2014	10
20	Describe embedded programming tools like compiler, cross complier, integrated development environment, in circuit emulator.	May-2014	10

DEPARTMENT OF

College Of Engineering _____ ELECTRONICS ENGINEERING

Chapterwise Plan

Subject Title: Embedded System Design

Chapter No. : 5

Chapter Name : Simulation, Testing and Debugging methodology and tools

Approximate Time Needed : 4 hrs

Lesson Schedule :

Lecture	Portion covered per hour
No.	
41	GNU Debugger (gdb), Boundary-Scan
42	JTAG interface concepts.
43	Black-box, White-box testing
44	Hardware emulation, logic analyzer

Objectives: To teach students:-

- 1 Boundary-Scan/JTAG interface
- 2 Black-box, White-box testing

Outcomes: student will learn:-

- 1. Simulation and testing
- 2. Different debugging tools & methodologies.

Dec-2013	5	
	Ţ	I
	Dec-2013	Dec-2013 5

Chapterwise Plan

Sub	iect	Title:	Emb	bedd	ed S	vstem	Design
Cub	1000	THUC.		Joura		Juli	Design

Chapter No. : 6

Chapter Name : Embedded system Designing examples

Approximate Time Needed : 8 hrs

Les	Lesson Schedule :						
	Lecture No.	Portion covered per hour					
	45	Requirement analysis, Hardware blocks diagram, System model (like					
		FSM, UML)					
	46	Software architectures (modules, drivers), and Component/hardware					
	selection,						
	47	Hard real time/ Mission critical: Missile, Car cruise control,					
	48	medical monitoring systems, process control system (temp,					
		pressure)					
	49	49 Soft real time: Automated vending machines,					
	50 Digital camera, media-player.						
	51	Communication: Embedded web servers, routers,					
	52	Wireless (sensor) networks.					

Objectives: To teach students:-

- 1. Hardware & software architectures
- 2. Different case studies

Outcomes: Students will learn:-

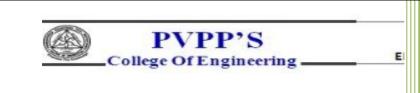
1. To design and analyse different categories of embedded systems.

DEPARTMENT OF

College Of Engineering _____ ELECTRONICS ENGINEERING

No.	Questions	Year	Marks
1	Design a FSM (Finite State Machine) for a simple elevator control system. The building has three total floors (G+2). Each floor has a call button and there are three buttons inside the elevator to choose the desired floor, discuss the operation of the system through the FSM.	Dec-2011	10
2	Explain waterfall model of embedded software development.	Dec-2011	10
3	Write short notes on: a) Programming models b) Spiral model used in EDLC c) Black box and white box testing	Dec-2011 May-2012 Dec-2011 May-2012	5 5 5 5
4	Design an automatic Tea and Coffee vending machine based on FSM (Finite State Machine) Model for the following requirement the tea/coffee vending is initiated by the user inserting a 5 rupee coin. After inserting the coin the user can either select coffee or tea or press cancel to cancel the order and take back the coin.	May-2012	7
5	Explain various programming modelling techniques used in Embedded system design.	Dec-2012	10
6	Design a car control embedded system with following specifications/features: i) It is an electric car. ii) Steering angle, acceleration, direction (R/F) are inputs from driver. lii) It control speed, left/right steering, forward/backward direction iv) Displays speed For designing above system give 1) Show block diagram for hardware 2) Software modules/drivers diagram, flowchart	May-2013	20

PVPP'S College Of Engineering		DEPARTME		
	3) FSM/Petrinet model of the syste	m.		
	4) Real time challenges and solution	ons.		
	5) Suggest hardware and software	solutions/tools		
	used.			
	Suggest testing, debugging, rea	ltime issues.		
7	For an embedded system, prepaid electricity meter	er , whose units	Dec-2013	12
	(readings) are down loaded wirelessly. Also a par	allel LCD of a		
	meter is installed in the house. Discuss the neces	sary hardware		
	required with justification. Support your answer wi	th suitable block		
	diagram of the embedded electricity meter.			
8	Design an automatic tea and coffee vending macl	nine based on	Dec-2013	8
	FSM model for the following requirement. The tea	/coffee vending is		
	initiated by user inserting a 5 rupee coin. After ins	erting the coin the		
	user can either select coffee or tea or press cance	el to cancel the		
	order and take back the coin.			
9	Design an embedded system to measure frequen	cy of a power line.	May-2014	10
	Suggest hardware components used. Also give so	oftware		
	architecture for the system.			
10	Note on: Petrinet modelling		May-2014	5
11	Note on: Waterfall model in embedded Software [Doualonmont	May-2014	5

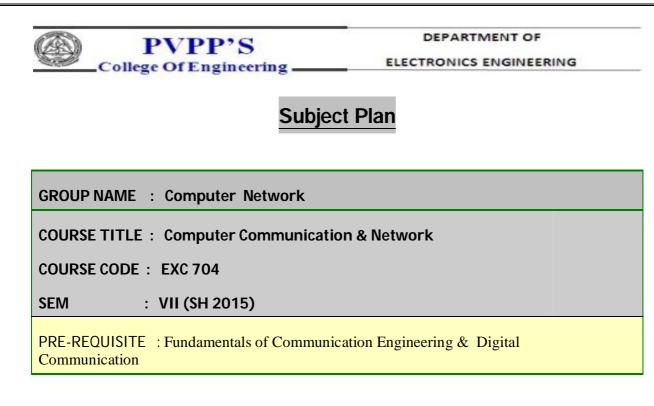

ELECTRONICS ENGINEERING

Assignment 1

- Explain the various program modelling techniques used in embedded system design.
 with the help of suitable diagram explain: i) LCD interface ii) Hex keypad interface.
- 2. Give features of CAN and explain protocol.
- 3. Draw MSP 430 architecture and write its specifications.

Assignment 2

- 1. Explain in detail Mutex, Pipes, Queues and Mailboxes.
- 2. Note on: Black Box and White Box Testing.
- Design an automatic tea and coffee vending machine based on FSM model for the following requirement. The tea/coffee vending is initiated by user inserting a 5 rupee coin. After inserting the coin the user can either select coffee or tea or press cancel to cancel the order and take back the coin.



COMPUTER COMMUNICATION & NETWORK

Mrs.Khushboo Singh

RATIONALE

In this course students learn the fundamentals of communication networks particularly computer networks. The main purpose of this course is to introduce students with hardware requirements with its specification for the design of computer networks. This course aims to introduce the various types of data communication networks, network models, comparison of OSI model & TCP/IP model. It covers the Physical layer services & system, data link layer protocols, Network Layer services & protocols & reliable and unreliable transmission at transport layer. This course make student able to understand different types of network applications and its principle.

OBJECTIVES:

- To ensure that students have the necessary networking skills to design, implement and analyze communication networks.
- To describe characteristics, topologies and types of LAN technologies with appropriate reasons for the selection of LAN technology and to introduce various switching methods and analyze various routing algorithms.
- To compare and contrast various digital carrier systems and to teach analysis, flow control and error control algorithms at data link layer.

To describe characteristics, topologies and types of LAN technologies with appropriate reasons for

DEPARTMENT OF

College Of Engineering _____ ELECTRONICS ENGINEERING

the selection of LAN technology and to introduce various switching methods and analyze various routing algorithms.

To compare and contrast OSI model with TCP/IP stack with IP addressing and related protocols.

OUTCOME :

- 5. Understand the fundamentals of communication and Computer networks.
- 6. Have the capability of designing and analyzing data transmission protocols and data link control protocols.
- 7. Able to discuss major trends in industry and current research activities within the discipline.
- 8. Able to implement networking protocols using TCP/IP based on socket programming.

LEARNING RESOURCES: -

RECOMMENDED BOOKS: -

- 5. B. A. Forouzan, "Data Communications and Networking", TMH, Fourth Edition.
- 6. S. Tanenbaum, "Computer Networks", Pearson Education, Fourth Edition.
- 7. Computer Networking: A Top-Down Approach, by J. F. Kurose and K. W. Ross, Addison Wesley, 5th Edition, March 2009, ISBN-13: 978-0136079675.

COURSE MATERIALS MADE AVAILABLE

- 1. Course instructional objectives & outcomes
- 2. Syllabus
- 3. Chapterwise Question Bank

Evaluation :

Theory Exam	80 M
Internal assessment: The average marks of Mid-term test (20 M) & End	- 20 M
term test (20 M) will be considered as final IA marks	
Oral	25 M
Term Work	25 M
Total	150 M

List of Experiments

Atleast 10 experiments based on the entire syllabus

Expt. No.	Name of the Experiments
1	Study of network hardware & network software
2	Study of network command in Linux OS
3	Telnet services
4	SSH services
5	Bit & byte stuffing in HDLC frame format
6	Study of MODEM standards
7	Study serial communication using null modem
8	Analyze tcp traffic using opnet it guru
9	Packet analyzer using wireshark
10	Study of Wireless network

DEPARTMENT OF

_College Of Engineering _____ ELECTRONICS ENGINEERING

Chapterwise Plan

Subject Title: Computer Communication & Network

Chapter No. : 1

Chapter Name : Introduction to Network Architectures, Protocol Layers, and

Service models

Approximate Time Needed : 10 hrs

Lesson Schedule :

Lecture No.	Portion covered per hour
1	Network Hardware: Topologies, LAN, MAN, WAN
2	Wireless network, Home Network, Internetworks, Virtual LANs
3	Network Software: Protocol Hierarchies, Design Issues for the layers
4	Connection-oriented and connectionless Services
5	Reference Models: Layers details of OSI
6	OSI Reference model
7	TCP/IP Models
8	TCP/IP Models
9	Protocol Layers
10	Their Service Models

DEPARTMENT OF ELECTRONICS ENGINEERING

College Of Engineering

Objectives:

1. Become familiar with the Network Hardware & software.

PVPP'S

- 2. Learn the Connection oriented & Connectionless services.
- 3. Understand the layered task (OSI Reference Model & TCP/IP Model)
- 4. Know the Protocol Layers & their service models

Model Questions:

- 1. Compare & contrast the OSI reference model & TCP/IP Model.
- Explain OSI Reference Model architecture for a network with two intermediate nodes, with a neat diagram. Also explain the functions of each layer. Name the layers responsible for (i) end to end reliability & (ii) link to link reliability.
- 3. Illustrate Connection-oriented & Connectionless Services.
- 4. Define network. Briefly explain the network hardware.
- 5. Write short notes on: Wireless network,

Home Network, Internetworks, Virtual LANs

DEPARTMENT OF

College Of Engineering _____ ELECTRONICS ENGINEERING

Chapterwise Plan

Subject Title: Computer Communication & Network

Chapter No. : 2

Chapter Name : Physical-layer Services and Systems

Approximate Time Needed : 08 hrs

Lesson Schedule :

Lecture No.	Portion covered per hour
1	Introduction to physical media, Coax, fiber, twisted pair, DSL, HFC
2	Data link layer services and protocols: Link-layer and its services
3	Ethernet, hubs, bridges, and switches, Link- layer addressing
4	Error-detection and error-correction. Parity, check-summing, CRC, Manchester encoding.
5	Aloha protocols, Control Access Protocol, Carrier Sense
6	Local Area Networks - Ethernet, Token ring,
	FDDI.
7	WiMax, cellular, satellite, and telephone networks, Bit transmission
8	FDM & TDM

80

ELECTRONICS ENGINEERING

Objectives:

- 1. Learn the various physical media.
- 2. Explore the data link layer services.
- 3. Analyze the error detection & error correction technique at data link layer
- 4. Understand and classify different LAN technology and application protocols.

Model Questions:

- 1. Explain the functions of each of these interconnecting devices: Hubs, Repeaters, Switches, Bridges, Routers & Gateways.
- 2. Write short notes on: Ethernet

Token ring

PVPP'S

College Of Engineering _

FDDI

WiMax cellular, satellite, and telephone networks

FDM & TDM

- 3. What are transmission impairments? Explain, compare co-axial cable, optical fiber cable with respect to transmission characteristic, data rate & bandwidth, application.
- 4. What is Ethernet? Explain fast Ethernet specifications. Also explain CSMA-CD, CSMA/CA in detail.
- 5. What is DSL technology? Explain various DSL technologies & compare.
- 6. Explain various LAN topologies.

DEPARTMENT OF

_College Of Engineering _____ ELECTRONICS ENGINEERING

Chapterwise Plan

Subject Title: Computer Communication & Network

Chapter No. : 3

Chapter Name : Data Link Layer Protocol

Approximate Time Needed : 10 hrs

Lesson Schedule :

Lecture No.	Portion covered per hour
1	PPP
2	PPP
3	PPP
4	HDLC
5	HDLC
6	HDLC
7	Stop and Wait Protocol
8	Stop and Wait Protocol
9	Stop and Wait Protocol
10	Stop and Wait Protocol

DEPARTMENT OF

ELECTRONICS ENGINEERING

Objectives:

1. Learn & explore the various data link layer protocols.

Model Questions:

- 1. What is data transparency? Explain the property of data transparency with reference to HDLC.
- 2. Explain the HDLC frame format. Describe configuration & response modes supported by HDLC protocol. Differentiate between HDLC & PPP protocols.
- 3. Write short notes: PPP

Stop and wait protocols.

DEPARTMENT OF

College Of Engineering _____ ELECTRONICS ENGINEERING

Chapterwise Plan

Subject Title: Computer Communication & Network

Chapter No. : 4

Chapter Name : Network layer services & protocols

Approximate Time Needed : 10 hrs

Lesson Schedule :

Lecture No.	Portion covered per hour
1	Switching fabric, Routing and forwarding
2	Queues and buffering
3	Virtual circuit & datagram network
4	Internet protocol
5	IPv4 and IPv6
6	Tunneling, LS and DV algorithms
7	Routing in the Internet, RIP
8	OSPF, and BGP
9	Broadcast and multicast
10	Handling mobility

ELECTRONICS ENGINEERING

Objectives:

- 1. Comprehend types of switching networks and contrast different switching methods.
- 2. Know the Network Protocol Layers & their services.
- 3. Develop and write programs for routing.

Model Questions:

- 1. What are the different routing protocols? Explain them briefly.
- 2. Compare IPv4 & IPv6.
- 3. Write short notes on: RIP

OSPF

BGP

Broadcast and multicast

DEPARTMENT OF

College Of Engineering _____ ELECTRONICS ENGINEERING

Chapterwise Plan

Subject Title: Computer Communication & Network

Chapter No. : 5

Chapter Name : Reliable and Unreliable Transport-layer Protocols

Approximate Time Needed : 08 hrs

Lesson Schedule :

Lecture No.	Portion covered per hour
1	GBN and SR
2	TCP and UDP
3	Port numbers, Multiplexing and de-multiplexing
4	Flow control and congestion control.
5	Flow control and congestion control.
6	Fairness, Delay, jitter
7	loss in packet-switched networks
8	Bandwidth, throughput, and quality-of-service

ELECTRONICS ENGINEERING

Objectives:

- 1. Learn the multiplexing technique & transport layer protocols.
- 2. Understand the Flow control and congestion control mechanism.
- 3. Know the performance parameters of the packet switched network.

Model Questions:

- 1. Explain the performance parameters of the packet switched network.
- 2. What are the various flow control & error control mechanism. Explain them.
- 3. Write short notes on: TCP

UDP GBN SR

DEPARTMENT OF

College Of Engineering _____ ELECTRONICS ENGINEERING

Chapterwise Plan

Subject Title: Computer Communication & Network

Chapter No. : 6

Chapter Name : Principles of Network Applications

Approximate Time Needed : 06 hrs

Lesson Schedule :

Lecture No.	Portion covered per hour
1	Application layer protocols : HTTP
2	FTP, SMTP
3	Peer-to-Peer File Sharing Protocols and
	Architectures
4	ISPs and Domain name systems
5	Socket API
6	Network socket programming

Objectives:

- 1. Describe the application layer protocols.
- 2. Learn the Socket API & its programming.

Model Questions:

- 1. Illustrate Socket API
- 2. Define Peer-to-Peer File Sharing Protocols. Explain its architecture.
- 3. Write short notes on: FTP

HTTP SMTP

ELECTRONICS ENGINEERING

Assignments

ASSIGNMENT 1 (DATE : 04th AUG 2015)

- 1. Explain OSI Reference Model architecture for a network with two intermediate nodes, with a neat diagram. Also explain the functions of each layer. Name the layers responsible for (i) end to end reliability & (ii) link to link reliability.
- 2. Compare & contrast the OSI reference model & TCP/IP Model.

PVPP'S

College Of Engineering

- 3. Explain the functions of each of these interconnecting devices: Hubs, Repeaters, Switches, Bridges, Routers & Gateways.
- 4. What are transmission impairments? Explain, compare co-axial cable, optical fiber cable with respect to transmission characteristic, data rate & bandwidth, application.
- 5. What is Ethernet? Explain fast Ethernet specifications. Also explain CSMA-CD, CSMA/CA in detail.
- 6. What is DSL technology? Explain various DSL technologies & compare.

ASSIGNMENT 2 (DATE : 4th SEPTEMBER 2015)

- 1. What is data transparency? Explain the property of data transparency with reference to HDLC.
- 2. Explain the HDLC frame format. Describe configuration & response modes supported by HDLC protocol. Differentiate between HDLC & PPP protocols.
- 3. What are the different routing protocols? Explain them briefly.
- 4. Compare IPv4 & IPv6.
- 5. Write short notes on: RIP

OSPF BGP

ASSIGNMENT 3 (DATE :5th OCTOBER 2015)

- 1. Explain the performance parameters of the packet switched network.
- 2. What are the various flow control & error control mechanism. Explain them.
- 3. Write short notes on: TCP

UDP GBN SR

- 4. Illustrate Socket API
- 5. Define Peer-to-Peer File Sharing Protocols. Explain its architecture.
- 6. Write short notes on: FTP,HTTP,SMTP

SH-2015

POWER ELECTRONICS-II

Mr. Vaibhav Patil

ELECTRONICS ENGINEERING

Subject Plan

GROUP NAME: Power Electronics

COURSE TITLE: Power Electronics-II

COURSE CODE: EXC703

SEM : VII (SH 2015)

PRE-REQUISITE: Electronic Devices, Digital electronics

OBJECTIVES:

- 11. To differentiate between signal level semiconductor devices and power level semiconductor devices.
- 12. To teach the basic concepts of power electronics. Also to study the important power devices in detail along with basic application of controlled rectifier. To get skill of developing and design related to power electronics circuits.
- 13. To study the ratings of different power level semiconductor devices, its cooling techniques, and applications based on the same.
- 14. To study different types of converters, its working and applications.
- 15. To get an idea about battery charging, SMPS and UPS circuitry design.
- 16. To introduce different types of chopper, Inverters and their applications

OUTCOME:

- 1. The Knowledge of single and three phase power electronic systems.
- 2. Basic concepts of power electronics system design, analysis, and their application.
- 3. Thoroughly understand the new concepts of switching and control the power electronic system.
- 4. The power electronics system analysis, synthesis and their simulation.

LEARNING RESOURCES: -

RECOMMENDED BOOKS:-

- 1. Ned Mohan: Power electronics; John Wiley Pub.
- 2. M.H. Rashid, Power electronics, PHI India
- 3. M.D. Singh and K.B. Khanchandani. Power electronics, Tata McGraw Hill

DEPARTMENT OF

College Of Engineering _____ ELECTRONICS ENGINEERING

- 4. J P Agrawal, Power Electronics Theory, Pearson
- 5. Dr. P.S. Bimbhra, Power Electroics, Khanna Publications.
- 6. R W Erikson: Power Electronics ; Springer
- 7. S Bacha, I Munteanu, A Bratcu: Power Electronics Converters, Springer
- 8. H Sira-Ramirez, R Silva-Ortigoza: Control systems techniques in Power electronics devices; Springer

COURSE MATERIALS MADE AVAILABLE

- 1. Course instructional objectives & outcomes
- 2. Syllabus
- 3. Chapter wise Question Bank

Evaluation :

Theory Exam	80 M
Internal assessment: The average marks of Mid-term test (20 M)	20 M
& End-term test (20 M) will be considered as final IA marks	
Total	100 M

List of Experiments

At least 10 experiments based on the entire syllabus

	experiments based on the entitle synabus
Expt.No.	Name of the Experiments
1	Simulation of single phase converters with R and RL load (With and with
	freewheeling diode).
2	Simulation of Three phase converter with R and RL load.
3	Simulation of single phase, three phase converter with effect of source
	inductance
4	Simulation of single phase PWM Inverter
5	Simulation of Single phase and Three Phase inverter
6	Simulation of chopper with closed loop control
7	Simulation of chopper with open loop control
8	Simulation of open-loop V/f speed control of three phase induction
	motor
9	Simulation of open loop speed control of DC motor
10	Study of SMPS or UPS
11	To study the speed control of DC motor
12	To study the speed control of AC motor

DEPARTMENT OF

ELECTRONICS ENGINEERING

Chapter wise Plan

Subject Title: Power Electronics II

Chapter No. : 1

Chapter Name : Rectifier and Inverter

Approximate Time Needed: 12hrs.

Lesson Schedule :

i Schedule .	
Lecture No.	Portion covered per hour
1	Principle of operation of Rectifier
2	Effect of source inductance Single phase rectifier
3	Effect of source inductance three phase rectifier
4	Distortion in line current waveform
5	Voltage distortion for diode
6	Voltage distortion for SCR based rectifier
7	Principle of operation of Inverter
8	Three phase Voltage source Inverter
9	PWM for three phase inverter
10	Space vector Modulation Concept
11	SVM technique for three phase inverter
12	Hysteresis control

Objectives:

- 1. Basic concepts of power electronics. The important power devices in detail and difference between them.
- 2. Importance of rectifier and inverter as well as their detail working.
- 3. Different switching techniques for inverters

- 1. Draw a waveform of single phase full rectifier with source induction.
- 2. What are differences between PWM and SVM inverter.
- 3. Explain three phase voltage source inverter using PWM technique.
- 4. Three phase VSI using space vector modulation control technique.

DEPARTMENT OF

College Of Engineering _____ ELECTRONICS ENGINEERING

Chapter wise Plan

Subject Title: Power Electronics II

Chapter No. : 2

Chapter Name : DC-DC Converter

Approximate Time Needed: 10hrs.

Lesson Schedule :

Schedule :	
Lecture No.	Portion covered per hour
13	Principle of DC converter
14	Average model of converters
15	Linearized and transfer function model
16	State space average Models
17	Basic models of Buck converter
18	Boost converter
19	Buck-Boost converter
20	Feedback control of these converters
21	Proportional Integral control
22	Proportional Integral and Differential control

Objectives:

- 1. Basics of dc-dc converters and its working, necessity of choppers.
- 2. Different types of dc-dc converter with various models and their application.
- 3. Feedback controls for close loop systems.

- 1. Explain transfer function model of buck and boost converter.
- 2. State space average model of buck-boost converter.
- 3. Explain PI controller for feedback control of converter.
- 4. Explain PID controller for feedback control of converter.

DEPARTMENT OF

ELECTRONICS ENGINEERING

Chapter wise Plan

Subject Title: Power Electronics II

Chapter No. : 3

Chapter Name : Power Electronics Application

Approximate Time Needed : 06hrs

Lecture	Portion covered per hour	
No.		
23	Use of Power Electronics System	
24	Switch Mode Power Supply	
25	Battery charging system	
26	Uninterrupted Power Supply	
27	Induction Heating	
28	Power system application	

Objective:

- 1. The knowledge of power electronics in various applications.
- 2. Some important power electronics application SMPS, UPS, etc.
- 3. Induction heating circuits and to store energy from solar and wind detail study of battery charging systems

- 1. What are converters used in SMPS? Explain push-pull converter.
- 2. What is induction heating? Explain in detail.
- 3. Types of UPS. Explain short break static ups configuration.
- 4. Give details of battery charging system.

DEPARTMENT OF

ELECTRONICS ENGINEERING

Chapter wise Plan

Subject Title: Power Electronics II

Chapter No. : 4

Chapter Name : Power Electronics Application in DC drives

Approximate Time Needed: 10 hrs.

Less	on Schedule	:
	Lecture	Portion covered per hour
	No.	
	29	Basics of DC Motor and its types
	30	Speed control in DC motor
	31	Various schemes to control DC motor speed
	32	Basics of single phase half wave semi converter
	33	Single phase half wave semi converter for separately excited
		DC motor
	34	Basics of single phase full converter
	35	Single phase Full converter for separately excited DC motor
	36	DC Motor Breaking
	37	Dynamic breaking of dc motor
	38	Regenerative breaking of dc motor

Objective:

- 1. Basics principles of DC motors and types of dc motor and working.
- 2. Various control systems to control dc motors
- 3. Details of single phase half wave and full wave converter drives for separately excited dc motor.
- 4. Different modes of breaking such as dynamic and regenerative.

- 1. Explain working principle of separately excited DC motor.
- 2. What are the various schemes of DC motor speed control?
- 3. Explain dynamic & regenerative breaking of DC motor.
- 4. Explain single phase full converter drive for separately excited DC motor.

DEPARTMENT OF

ELECTRONICS ENGINEERING

Chapterwise Plan

Subject Title: Power Electronics II

Chapter No. : 5

Chapter Name : Power Electronics Application in AC motor

Approximate Time Needed : 14 hrs

Lesson Schedule :

Lecture No.	Portion covered per hour
39	Introduction to AC motors
40	Basic operation of AC motors
41	Various types of AC motor
42	Basic operation, working of induction motor
43	Three phase induction motor
44	Various speed control method for three phase induction
	motor
45	Stator voltage method
46	Variable frequency Method
47	Rotor resistance method
48	V/F (Voltage/Frequency) control method
49	Regenerative Breaking
50	Stator voltage method
51	Comparison of these methods
52	Revision

Objective:

- 1. Principle and working of ac motors, Types of ac motors
- 2. Various control system to control speed of AC motors
- 3. Detail of voltage/ frequency control method, Stator voltage control, regenerative breaking, etc.

- 1. Explain the working of three phase induction motor.
- 2. What are the techniques of speed control of induction motor.
- 3. Explain stator voltage control & rotor resistance control of induction motor.
- 4. Details of V/F control & regenerative breaking of induction.